12-17-2024 · Research

Better by design: Why human choices matter for return predictions via machine learning

Machine learning (ML) models have become increasingly popular for predicting stock returns, both in academic research and industry practice. However, as a still developing field, we see a lot of variety when it comes to key design choices. Recent research systematically explores this and uncovers how these choices directly affect the performance of ML strategies.

Choices choices

The paper by Minghui Chen, Matthias Hanauer, and Tobias Kalsbach, titled ‘Design choices, machine learning, and the cross-section of stock returns’, identifies several key design choices researchers have to make when training ML models. For instance, when setting the prediction (target) variable, should the researcher employ the excess return over the risk-free rate or the abnormal return relative to the market? Is it better to use a continuous target variable or are categories, such as outperformers vs. underperformers, preferable? Is it better to train models based on a rolling window that leads to more adaptive models, or are models based on expanding windows superior, thanks to the availability of more training data?

To assess the importance of such choices, the authors identify seven such key design choices and examine all the ensuing possible combinations, resulting in a total of 1,056 ML models. In this way, the study trains each model on a common set of signals (features) for the US stock market and evaluates their out-of-sample performance using hypothetical top-minus-bottom decile portfolios.

Figure 1 reveals that portfolio returns vary substantially across different model designs, with monthly mean returns ranging from 0.13% to 1.98% and annualized Sharpe ratios ranging from 0.08 to 1.82.1 This variation highlights the substantial impact of human design choices on the performance of ML strategies.

Figure 1 | Cumulative performance of machine learning strategies

Figure 1 | Cumulative performance of machine learning strategies

Source: Robeco, Chen et al. (2024). This figure shows the cumulative performance of a USD 1 initial investment in long-short ML portfolios for each possible combination of the research design choices. For each ML model and month, we first cross-sectionally sort all stocks based on their one-month-ahead return predictions. We then construct the value-weighted long-short portfolios by going long the top decile and short the bottom decile stocks. The solid black line represents the strategy with the median cumulative performance for each month, and the dashed black lines represent the 10th and 90th percentiles of each month, respectively. The sample period is from January 1987 to December 2021.

Machine learning models: Separating the wheat from the chaff

Having documented the substantial variation in the performance of ML models, the study also provides actionable guidance for ML model design:

  • Ensembles of ML models typically outperform individual algorithms.

  • The choice of target variable depends on the investment objective:
    o For identifying relative winners and losers among stocks, predicting stock returns over the market rather than the risk-free rate is better.
    o If the goal is to achieve high market-risk-adjusted returns, CAPM beta-adjusted returns are better.

  • Non-linear ML models are more likely to outperform their linear counterparts when:
    o using abnormal returns relative to the market as the target variable,
    o employing continuous target returns, or
    o adopting expanding training windows.


Conclusion

While computational infrastructure, ML algorithms, and data have become significantly more accessible over the past decade or two, model design remains a critical component of success. At first glance, it might seem that an ML investment strategy only requires a few basic elements: cloud computing space, generic factor data, some Python packages, and a couple of data scientists. However, this approach often lacks the crucial domain knowledge that Robeco has cultivated over 20 years in quant investing. That’s why in financial markets, where the signal-to-noise ratio is low and the risk of overfitting high, investment experience, and economic intuition still play a pivotal role. Robeco’s extensive expertise ensures that ML models focus on meaningful patterns and avoid common pitfalls, bridging the gap between technology and investment insight.

Read the full paper


Footnote

1Please note that these are hypothetical gross returns for long-minus-short strategies that do not consider any transaction costs. We investigated the impact of transaction costs on ML strategies in our study ‘The term structure of machine learning alpha’.


Discover the value of quant

Subscribe for cutting-edge quant strategies and insights.

Explore quant

Let's keep the conversation going

Keep track of fast-moving events in sustainable and quantitative investing, trends and credits with our newsletters.

Don’t miss out
Robeco

Robeco aims to enable its clients to achieve their financial and sustainability goals by providing superior investment returns and solutions.

Important information
The Robeco Capital Growth Funds have not been registered under the United States Investment Company Act of 1940, as amended, nor or the United States Securities Act of 1933, as amended. None of the shares may be offered or sold, directly or indirectly in the United States or to any U.S. Person (within the meaning of Regulation S promulgated under the Securities Act of 1933, as amended (the “Securities Act”)). Furthermore, Robeco Institutional Asset Management B.V. (Robeco) does not provide investment advisory services, or hold itself out as providing investment advisory services, in the United States or to any U.S. Person (within the meaning of Regulation S promulgated under the Securities Act).
This website is intended for use only by non-U.S. Persons outside of the United States (within the meaning of Regulation S promulgated under the Securities Act who are professional investors, or professional fiduciaries representing such non-U.S. Person investors. By clicking “I Agree” on our website disclaimer and accessing the information on this website, including any subdomain thereof, you are certifying and agreeing to the following: (i) you have read, understood and agree to this disclaimer, (ii) you have informed yourself of any applicable legal restrictions and represent that by accessing the information contained on this website, you are not in violation of, and will not be causing Robeco or any of its affiliated entities or issuers to violate, any applicable laws and, as a result, you are legally authorized to access such information on behalf of yourself and any underlying investment advisory client, (iii) you understand and acknowledge that certain information presented herein relates to securities that have not been registered under the Securities Act, and may be offered or sold only outside the United States and only to, or for the account or benefit of, non-U.S. Persons (within the meaning of Regulation S under the Securities Act), (iv) you are, or are a discretionary investment adviser representing, a non-U.S. Person (within the meaning of Regulation S under the Securities Act) located outside of the United States and (v) you are, or are a discretionary investment adviser representing, a professional non-retail investor.


Access to this website has been limited so that it shall not constitute directed selling efforts (as defined in Regulation S under the Securities Act) in the United States and so that it shall not be deemed to constitute Robeco holding itself out generally to the public in the U.S. as an investment adviser. Nothing contained herein constitutes an offer to sell securities or solicitation of an offer to purchase any securities in any jurisdiction. We reserve the right to deny access to any visitor, including, but not limited to, those visitors with IP addresses residing in the United States. This website has been carefully prepared by Robeco. The information contained in this publication is based upon sources of information believed to be reliable. Robeco is not answerable for the accuracy or completeness of the facts, opinions, expectations and results referred to therein. Whilst every care has been taken in the preparation of this website, we do not accept any responsibility for damage of any kind resulting from incorrect or incomplete information. This website is subject to change without notice. The value of the investments may fluctuate. Past performance is no guarantee of future results. If the currency in which the past performance is displayed differs from the currency of the country in which you reside, then you should be aware that due to exchange rate fluctuations the performance shown may increase or decrease if converted into your local currency. For investment professional use only. Not for use by the general public.