Robeco logo

Disclaimer

1. General
Please read this information carefully.

This website is prepared and issued by Robeco Hong Kong Limited ("Robeco"), which is a corporation licensed by the Securities and Futures Commission in Hong Kong to engage in Type 1 (dealing in securities); Type 2 (dealing in futures contracts); Type 4 (advising in securities) and Type 9 (asset management) regulated activities. The Company does not hold client assets and is subject to the licensing condition that it shall seek the SFC’s prior approval before extending services at retail level. This website has not been reviewed by the Securities and Futures Commission or any regulatory authority in Hong Kong.

2. Important risk disclosures
Important risk disclosures Robeco Capital Growth Funds (“the Funds”) are distinguished by their respective specific investment policies or any other specific features. Please read carefully for the risks of the Funds:

  • Some Funds are subject to investment, market, equities, liquidity, counterparty, securities lending and foreign currency risk and risk associated with investments in small and/or mid-capped companies.

  • Some Funds are subject to the risks of investing in emerging markets which include political, economic, legal, regulatory, market, settlement, execution, counterparty and currency risks.

  • Some Funds may invest in China A shares directly through the Qualified Foreign Institutional Investor (“QFII”) scheme and / or RMB Qualified Foreign Institutional Investor (“RQFII”) scheme and / or Stock Connect programmes which may entail additional clearing and settlement, regulatory, operational, counterparty and liquidity risk.

  • For distributing share classes, some Funds may pay out dividend distributions out of capital. Where distributions are paid out of capital, this amounts to a return or withdrawal of part of your original investment or capital gains attributable to that and may result in an immediate decrease in the net asset value of shares.

  • Some Funds’ investments maybe concentrated in one region / one country / one sector / around one theme and therefore the value of the Fund may be more volatile and may be subject to concentration risk.

  • The risk exists that the quantitative techniques used by some Funds may not work and the Funds’ value may be adversely affected.

  • In addition to investment, market, liquidity, counterparty, securities lending, (reverse) repurchase agreements and foreign currency risk, some Funds are subject to risk associated with fixed income investments like credit risk, interest rate risk, convertible bonds risk, ABS risk and the risk of investments in non-investment grade or unrated securities and the risk of investments made in non-investment grade sovereign securities.

  • Some Funds can use derivatives extensively. Robeco Global Consumer Trends Equities can use derivatives for hedging and efficient portfolio management. Derivatives exposure may involve higher counterparty, liquidity and valuation risks. In adverse situations, the Funds may suffer significant losses (even a total loss of the Funds’ assets) from its derivative usage.

  • Robeco European High Yield Bonds is subject to Eurozone risk.

  • Investors may suffer substantial losses of their investments in the Funds. Investor should not invest in the Funds solely based on the information provided in this document and should read the offering documents (including potential risks involved) for details.

3. Local legal and sales restrictions
The Website is to be accessed by “professional investors” only (as defined in the Securities and Futures Ordinance (Cap.571) and/or the Securities and Futures (Professional Investors) Rules (Cap.571D) under the laws of Hong Kong). The Website is not directed at any person in any jurisdiction where (by reason of that person’s nationality, residence or otherwise) the publication or availability of the Website is prohibited. Persons in respect of whom such prohibitions apply or persons other than those specified above must not access this Website. Persons accessing the Website need to be aware that they are responsible themselves for the compliance with all local rules and regulations. By accessing this Website and any of its pages, you acknowledge your agreement with understanding of the following terms of use and legal information. If you do not agree to the terms and conditions below, do not access this Website or any pages thereof.

The information contained in the Website is being provided for information purposes.

Neither information nor any opinion expressed on the Website constitutes a solicitation, an offer or a recommendation to buy, sell or dispose of any investment, to engage in any other transaction or to provide any investment advice or service. The information contained in the Website does not constitute investment advice or a recommendation and was prepared without regard to the specific objectives, financial situation or needs of any particular person who may receive it. An investment in a Robeco product should only be made after reading the related legal documents such as management regulations, prospectuses, most recent annual and semi-annual reports, which can be all be obtained free of charge at www.robeco.com/hk/en and at the Robeco Hong Kong office.

4. Use of the Website
The information is based on certain assumptions, information and conditions applicable at a certain time and may be subject to change at any time without notice. Robeco aims to provide accurate, complete and up-to-date information, obtained from sources of information believed to be reliable. Persons accessing the Website are responsible for their choice and use of the information.

5. Investment performance
No assurance can be given that the investment objective of any investment products will be achieved. No representation or promise as to the performance of any investment products or the return on an investment is made. The value of your investments may fluctuate. The value of the assets of Robeco investment products may also fluctuate as a result of the investment policy and/or the developments on the financial markets. Results obtained in the past are no guarantee for the future. Past performance, projection, or forecast included in this Website should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance. Fund performance figures are based on the month-end trading prices and are calculated on a total return basis with dividends reinvested. Return figures versus the benchmark show the investment management result before management and/or performance fees; the fund returns are with dividends reinvested and based on net asset values with prices and exchange rates of the valuation moment of the benchmark.

Investments involve risks. Past performance is not a guide to future performance. Potential investors should read the terms and conditions contained in the relevant offering documents and in particular the investment policies and the risk factors before any investment decision is made. Investors should ensure they fully understand the risks associated with the fund and should also consider their own investment objective and risk tolerance level. Investors are reminded that the value and income (if any) from shares of the fund may be volatile and could change substantially within a short period of time, and investors may not get back the amount they have invested in the fund. If in doubt, please seek independent financial and professional advice.

6. Third party websites
This website includes material from third parties or links to websites maintained by third parties some of which is supplied by companies that are not affiliated to Robeco. Following links to any other off-site pages or websites of third parties shall be at the own risk of the person following such link. Robeco has not reviewed any of the websites linked to or referred to by the Website and does not endorse or accept any responsibility for their content nor the products, services or other items offered through them. Robeco shall have no liability for any losses or damages arising from the use of or reliance on the information contained on websites of third parties, including, without limitation, any loss of profit or any other direct or indirect damage. Third party off-site pages or websites are provided for informational purposes only.

7. Limitation of liability
Robeco as well as (possible) other suppliers of information to the Website accept no responsibility for the contents of the Website or the information or recommendations contained herein, which moreover may be changed without notice.

Robeco assumes no responsibility for ensuring, and makes no warranty, that the functioning of the Website will be uninterrupted or error-free. Robeco assumes no responsibility for the consequences of e-mail messages regarding a Robeco (transaction) service, which either cannot be received or sent, are damaged, received or sent incorrectly, or not received or sent on time.

Neither will Robeco be liable for any loss or damage that may result from access to and use of the Website.

8. Intellectual property
All copyrights, patents, intellectual and other property, and licenses regarding the information on the Website are held and obtained by Robeco. These rights will not be passed to persons accessing this information.

9. Privacy
Robeco guarantees that the data of persons accessing the Website will be treated confidentially in accordance with prevailing data protection regulations. Such data will not be made available to third parties without the approval of the persons accessing the Website, unless Robeco is legally obliged to do so. Please find more details in our Privacy and Cookie Policy.

10. Applicable law
The Website shall be governed by and construed in accordance with the laws of Hong Kong. All disputes arising out of or in connection with the Website shall be submitted to the exclusive jurisdiction of the courts of Hong Kong.

Please click the “I agree” button if you have read and understood this page and agree to the Disclaimers above and the collection and use of your personal data by Robeco, for the purposes for which such data is collected and used as set out in the Privacy and Cookie Policy, including for the purpose of direct marketing of Robeco products or services. Otherwise, please click “I Disagree” to leave the website.

I Disagree

01-03-2023 · Interview

'Machine learning models can spot interesting interactions'

Buzzwords such as ‘alternative data’, ‘machine learning’ and ‘natural language processing’ are quickly becoming part of the jargon used by asset managers. We uncover what these mean for the Robeco Quant Team in our discussion with Quant Researcher Clint Howard.

    Authors

  • Lusanele Magwa - Investment Specialist

    Lusanele Magwa

    Investment Specialist

Summary

  1. We hunt for alternative datasets that we can use to either validate or refute our economic intuition

  2. Machine learning provides quant investors with an extra toolkit to study economic problems

  3. Natural language processing can allow quant investors to go to previously unexplored places

The growing prominence of big data is widening the scope for quant strategies. So, given the multitude of new alternative datasets cropping up, how do you select which ones to use?

“Our research initiatives are premised on ideas that are driven by fundamental economic reasons. As quant investors, we have traditionally used financial statement and market data to conduct such research. Now with the deluge of alternative datasets, we have additional information that we can use and different ways to study our ideas. That said, it is important to be discerning about which datasets can add value.”

“Because we intentionally focus on the economic rationale behind our ideas before selecting data sources (whether alternative or traditional), it allows us to be quite deliberate in picking the datasets that we believe will actually answer the questions we are studying. If you do not start with the economic principles, you face the potential risk of overfitting a model and weakening its predictive power as ill-suited datasets might be chosen.”

“For example, big text data such as broker reports, company announcements and news filings are a rich treasure trove given the large volumes of data available. But these data sources only add value to our process if we can use them to research the economic intuition behind our market observations or hypotheses. Alternative datasets are, therefore, a means to an end, but not the be-all and end-all.”

Data vendors can offer the same datasets to competing asset managers. So how does the Robeco Quant Team gain unique insights?

“This is true, data vendors market and sell their datasets to several asset managers as it is the nature of their business. So if investors just plug in the data into their models or strategies in the same form they receive them in, then they run the risk of falling prey to alpha decay and crowding issues as their peers can easily do the same thing.”

“There are a few ways to address this. An approach we favor is sourcing datasets that are as raw as possible, with minimal alterations made by a vendor. This allows us to transform the granular data so that it is suited to the economic problems we are trying to study. This enables us to incorporate our unique insights and domain knowledge, therefore differentiating our use of the data from competitors’.”

“It is important to stress again that we always start any research we do based on economic intuition. This means that we have a sensible idea about why something might work. Only then do we hunt for the datasets that we can use to either validate or refute our intuition. By following this approach, we believe the possibility of using a dataset in exactly the same manner as another asset manager diminishes.”

What can we do with machine learning (ML) that was not easy to do before?

“For decades, standard linear modeling has been the go-to approach in quant models and has laid the foundation for the success achieved by the investment style over the years. These models essentially impose linear relationships between variables, from which patterns can be deduced to establish alpha signals, risk models or portfolio construction algorithms, for example.”

“ML provides quant investors with an extra toolkit to study economic problems (or reveal such patterns). This flexible and powerful framework – through the use of applications such as neural networks and random forest – can uncover nonlinear relationships between variables as well as how variables interact with each other. This can provide quant investors with additional insight for signal construction.”

“For example, ML models can spot interesting interactions such as between newsflow and stock-price reversals. One of the patterns observed in markets is that when a firm’s share price goes up (or down) by a big margin, it tends to revert back down (or up). Interestingly, we find that this reversal phenomenon is affected by the level of abnormal newsflow related to stocks in question.”

“Specifically, if there has been more newsflow than average on a stock around a time when its share price rallies or sinks, it does not tend to revert. The intuition behind this is that there is probably a genuine reaction to a change in fundamentals if there has been a lot of news covering a recent event. But in the absence of significant newsflow, we do tend to see the reversal pattern in stocks, suggesting that the initial move was probably based on noise rather than fundamentals. So these kind of insights are really interesting for us.”

And why now?

“ML, specifically neural networks, has been around since the 1940s, but there are two main reasons why the concept has only taken off more recently. The first reason is due to computational power. To put this in context, it would have taken several months to run the simplest ML model on the fanciest IBM or Bell Labs research computer back in the day. The turning point was in the 2000s when we witnessed exponential growth in computational power, facilitating the rise of applied research in ML to solve real-world problems.”

“The second reason is related to data as ML models require a lot of it for training purposes. The advent of big data and increasing ease of access – largely due to cloud computing – has been helpful. You can find data on just about anything these days and this has propelled research on ML applications given the increased scope for training. Luckily for us in finance, we also get to benefit from the initial work done by computer scientists in terms of applied research in ML.”

Get the latest insights

Subscribe to our newsletter for investment updates and expert analysis.

Don’t miss out

What do you think of the notion that ML models are black boxes?

“If you asked me this five to ten years ago, then I would say it is a fair statement because back then there was a lot of hype given the results ML techniques were producing. But there was not a lot of attention given to what lay under the hood. Since then, there have been significant advancements on this front – such as the development of the Explainable AI (XAI) toolkit – that allow users to better understand the predictions made by ML models.”

“For example, Shapley values is an XAI method that allows us to interpret ML models by analyzing the relationship between the model inputs and outputs, how the different variables contribute to predicting outcomes, how the variables interact, etc. This level of understanding is in line with our investment philosophy that all our ideas need to be supported by an economic rationale. These tools allow us to see if ML models make decisions that are in line with our economic intuition.”

“That said, the bar for us to use ML models in our strategies is high given their complex nature. We have to be comfortable that we understand how they work, that they behave in the way that we would expect them to, and that they add value on top of our existing models. Without such XAI tools that transform ML models into ‘glass boxes’, we probably would not be able to explore the possibilities offered by ML.”

Natural language processing (NLP) has attracted a lot of attention in recent years. What are some interesting applications of NLP?

“NLP is a toolkit that can be used to analyze spoken words and text. This is quite exciting for us quant investors as it allows us to go to previously unexplored places. To put this in context, fundamental equity analysts examine broker research notes, analyze company reports, review news releases and meet with management teams, among other things. Using their expertise, they glean insights by reading between the lines. Quant investors can now potentially perform similar tasks with NLP techniques such as sentiment analysis.”

“For example, this allows us to scrutinize how brokers view a company based on how they write about it in their reports, enables us to analyze news sentiment based on the language used in articles pertaining to specific firms, and gives us the tools to assess the mood within a company based on the language used by its executives at press conferences compared to earnings calls. Moreover, this can be done swiftly across thousands of stocks. And this is just one of the many ways in which NLP can be used within quant models.”

But what if company executives adapt their use of words to circumvent this?

“This is classic game theory. In this scenario, quant investors start off by building NLP models to analyze the language used by executives. When the executives catch on to this, they change their communication style to disguise their sentiment. But everything comes full circle as quant investors can retrain their NLP models to catch onto the changes, until the executives make further tweaks to how they relay their messaging.”

“This iterative loop speaks to the concept of: if you want to innovate, then you need to innovate constantly. It is not only our competitors that will try to keep up with us or forge ahead, but also the companies that we invest in. It means we need to continuously update and improve the way we conduct our research and implement our strategies.”

Given the promising prospects of alternative data and advanced techniques, many asset managers are investigating and applying these techniques. What distinguishes Robeco’s approach?

“We were very deliberate in how we approached the incorporation of alternative data and advanced techniques into our research and strategies. We focused firstly on laying the foundations by heavily investing in the infrastructure. We wanted to ensure that we would be able to use these datasets and tools in a robust and repeatable manner, while also being able to seamlessly integrate ML or NLP models into new or existing strategies.”

“We were aware of the risk of spending valuable hours on research as well as building ML and NLP models, and then being thwarted by the complexities of the practical implementation of these models. As a result of our initial investment, the production lead time to deploy new ML and NLP research in our strategies is relatively short.”

“I believe this gives us a competitive edge as setting up state-of-the-art infrastructure requires a lot resources, technical expertise and time to see it to completion. After three or so years of hard work on this project, we are proud of the results and can fully focus on our research pipeline and on implementing our best ideas. This has started to happen as of last year with the inclusion of a distress risk ML model in our strategies that forecasts stock price crash risk.”

Important information

The contents of this document have not been reviewed by the Securities and Futures Commission ("SFC") in Hong Kong. If you are in any doubt about any of the contents of this document, you should obtain independent professional advice. This document has been distributed by Robeco Hong Kong Limited (‘Robeco’). Robeco is regulated by the SFC in Hong Kong. This document has been prepared on a confidential basis solely for the recipient and is for information purposes only. Any reproduction or distribution of this documentation, in whole or in part, or the disclosure of its contents, without the prior written consent of Robeco, is prohibited. By accepting this documentation, the recipient agrees to the foregoing This document is intended to provide the reader with information on Robeco’s specific capabilities, but does not constitute a recommendation to buy or sell certain securities or investment products. Investment decisions should only be based on the relevant prospectus and on thorough financial, fiscal and legal advice. Please refer to the relevant offering documents for details including the risk factors before making any investment decisions. The contents of this document are based upon sources of information believed to be reliable. This document is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation. Investment Involves risks. Historical returns are provided for illustrative purposes only and do not necessarily reflect Robeco’s expectations for the future. The value of your investments may fluctuate. Past performance is no indication of current or future performance.