Robeco logo

Disclaimer

1. General
Please read this information carefully.

This website is prepared and issued by Robeco Hong Kong Limited ("Robeco"), which is a corporation licensed by the Securities and Futures Commission in Hong Kong to engage in Type 1 (dealing in securities); Type 2 (dealing in futures contracts); Type 4 (advising in securities) and Type 9 (asset management) regulated activities. The Company does not hold client assets and is subject to the licensing condition that it shall seek the SFC’s prior approval before extending services at retail level. This website has not been reviewed by the Securities and Futures Commission or any regulatory authority in Hong Kong.

2. Important risk disclosures
Important risk disclosures Robeco Capital Growth Funds (“the Funds”) are distinguished by their respective specific investment policies or any other specific features. Please read carefully for the risks of the Funds:

  • Some Funds are subject to investment, market, equities, liquidity, counterparty, securities lending and foreign currency risk and risk associated with investments in small and/or mid-capped companies.

  • Some Funds are subject to the risks of investing in emerging markets which include political, economic, legal, regulatory, market, settlement, execution, counterparty and currency risks.

  • Some Funds may invest in China A shares directly through the Qualified Foreign Institutional Investor (“QFII”) scheme and / or RMB Qualified Foreign Institutional Investor (“RQFII”) scheme and / or Stock Connect programmes which may entail additional clearing and settlement, regulatory, operational, counterparty and liquidity risk.

  • For distributing share classes, some Funds may pay out dividend distributions out of capital. Where distributions are paid out of capital, this amounts to a return or withdrawal of part of your original investment or capital gains attributable to that and may result in an immediate decrease in the net asset value of shares.

  • Some Funds’ investments maybe concentrated in one region / one country / one sector / around one theme and therefore the value of the Fund may be more volatile and may be subject to concentration risk.

  • The risk exists that the quantitative techniques used by some Funds may not work and the Funds’ value may be adversely affected.

  • In addition to investment, market, liquidity, counterparty, securities lending, (reverse) repurchase agreements and foreign currency risk, some Funds are subject to risk associated with fixed income investments like credit risk, interest rate risk, convertible bonds risk, ABS risk and the risk of investments in non-investment grade or unrated securities and the risk of investments made in non-investment grade sovereign securities.

  • Some Funds can use derivatives extensively. Robeco Global Consumer Trends Equities can use derivatives for hedging and efficient portfolio management. Derivatives exposure may involve higher counterparty, liquidity and valuation risks. In adverse situations, the Funds may suffer significant losses (even a total loss of the Funds’ assets) from its derivative usage.

  • Robeco European High Yield Bonds is subject to Eurozone risk.

  • Investors may suffer substantial losses of their investments in the Funds. Investor should not invest in the Funds solely based on the information provided in this document and should read the offering documents (including potential risks involved) for details.

3. Local legal and sales restrictions
The Website is to be accessed by “professional investors” only (as defined in the Securities and Futures Ordinance (Cap.571) and/or the Securities and Futures (Professional Investors) Rules (Cap.571D) under the laws of Hong Kong). The Website is not directed at any person in any jurisdiction where (by reason of that person’s nationality, residence or otherwise) the publication or availability of the Website is prohibited. Persons in respect of whom such prohibitions apply or persons other than those specified above must not access this Website. Persons accessing the Website need to be aware that they are responsible themselves for the compliance with all local rules and regulations. By accessing this Website and any of its pages, you acknowledge your agreement with understanding of the following terms of use and legal information. If you do not agree to the terms and conditions below, do not access this Website or any pages thereof.

The information contained in the Website is being provided for information purposes.

Neither information nor any opinion expressed on the Website constitutes a solicitation, an offer or a recommendation to buy, sell or dispose of any investment, to engage in any other transaction or to provide any investment advice or service. The information contained in the Website does not constitute investment advice or a recommendation and was prepared without regard to the specific objectives, financial situation or needs of any particular person who may receive it. An investment in a Robeco product should only be made after reading the related legal documents such as management regulations, prospectuses, most recent annual and semi-annual reports, which can be all be obtained free of charge at www.robeco.com/hk/en and at the Robeco Hong Kong office.

4. Use of the Website
The information is based on certain assumptions, information and conditions applicable at a certain time and may be subject to change at any time without notice. Robeco aims to provide accurate, complete and up-to-date information, obtained from sources of information believed to be reliable. Persons accessing the Website are responsible for their choice and use of the information.

5. Investment performance
No assurance can be given that the investment objective of any investment products will be achieved. No representation or promise as to the performance of any investment products or the return on an investment is made. The value of your investments may fluctuate. The value of the assets of Robeco investment products may also fluctuate as a result of the investment policy and/or the developments on the financial markets. Results obtained in the past are no guarantee for the future. Past performance, projection, or forecast included in this Website should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance. Fund performance figures are based on the month-end trading prices and are calculated on a total return basis with dividends reinvested. Return figures versus the benchmark show the investment management result before management and/or performance fees; the fund returns are with dividends reinvested and based on net asset values with prices and exchange rates of the valuation moment of the benchmark.

Investments involve risks. Past performance is not a guide to future performance. Potential investors should read the terms and conditions contained in the relevant offering documents and in particular the investment policies and the risk factors before any investment decision is made. Investors should ensure they fully understand the risks associated with the fund and should also consider their own investment objective and risk tolerance level. Investors are reminded that the value and income (if any) from shares of the fund may be volatile and could change substantially within a short period of time, and investors may not get back the amount they have invested in the fund. If in doubt, please seek independent financial and professional advice.

6. Third party websites
This website includes material from third parties or links to websites maintained by third parties some of which is supplied by companies that are not affiliated to Robeco. Following links to any other off-site pages or websites of third parties shall be at the own risk of the person following such link. Robeco has not reviewed any of the websites linked to or referred to by the Website and does not endorse or accept any responsibility for their content nor the products, services or other items offered through them. Robeco shall have no liability for any losses or damages arising from the use of or reliance on the information contained on websites of third parties, including, without limitation, any loss of profit or any other direct or indirect damage. Third party off-site pages or websites are provided for informational purposes only.

7. Limitation of liability
Robeco as well as (possible) other suppliers of information to the Website accept no responsibility for the contents of the Website or the information or recommendations contained herein, which moreover may be changed without notice.

Robeco assumes no responsibility for ensuring, and makes no warranty, that the functioning of the Website will be uninterrupted or error-free. Robeco assumes no responsibility for the consequences of e-mail messages regarding a Robeco (transaction) service, which either cannot be received or sent, are damaged, received or sent incorrectly, or not received or sent on time.

Neither will Robeco be liable for any loss or damage that may result from access to and use of the Website.

8. Intellectual property
All copyrights, patents, intellectual and other property, and licenses regarding the information on the Website are held and obtained by Robeco. These rights will not be passed to persons accessing this information.

9. Privacy
Robeco guarantees that the data of persons accessing the Website will be treated confidentially in accordance with prevailing data protection regulations. Such data will not be made available to third parties without the approval of the persons accessing the Website, unless Robeco is legally obliged to do so. Please find more details in our Privacy and Cookie Policy.

10. Applicable law
The Website shall be governed by and construed in accordance with the laws of Hong Kong. All disputes arising out of or in connection with the Website shall be submitted to the exclusive jurisdiction of the courts of Hong Kong.

Please click the “I agree” button if you have read and understood this page and agree to the Disclaimers above and the collection and use of your personal data by Robeco, for the purposes for which such data is collected and used as set out in the Privacy and Cookie Policy, including for the purpose of direct marketing of Robeco products or services. Otherwise, please click “I Disagree” to leave the website.

I Disagree

04-12-2023 · Insight

Using machine learning for emerging market equity returns

Machine learning algorithms and models have large potential for investing in emerging stock markets, says quant researcher Laurens Swinkels.

    Authors

  • Laurens Swinkels - Head of Quant Strategy

    Laurens Swinkels

    Head of Quant Strategy

  • Matthias Hanauer - Researcher

    Matthias Hanauer

    Researcher

Summary

  1. Linear and machine learning algorithms applied to emerging market stocks

  2. Five portfolios created based on the machine-predicted excess returns

  3. Machine models brought higher returns than traditional factor investing

Machine learning algorithms have surged in popularity among academics and practitioners as they seek to determine if they can enhance returns. Robeco’s quant team put this to the test by seeing what the application of such algorithms would mean for investing in emerging market equities1. The results were as useful as the machine learning models themselves.

We discovered that they excel at detecting financially material non-linear relationships between company characteristics – a feat that would be challenging for human researchers. We also found that using ensembling, or the ‘wisdom of the crowd’ for machine learning models, could increase expected returns net of trading costs by up to 2% per annum for equity investors.

The results came from analyzing more than 15,000 unique stocks from 32 countries between 1990 and 2021. We used 36 standard characteristics that can apply to both developed and emerging markets for the study, and opted not to introduce any new ones to highlight the added value that machine learning techniques can bring. This ensured that any additional performance gleaned wasn’t just the result of novel data but accrued to well-known factors such as low-risk, valuation, momentum and quality.

Different algorithms were then used to predict relative stock returns to their own country market index based on these factors. The least complex method assumes that each of the firm characteristics has a linear relationship to stocks’ outperformances.

Three machine learning methods were used to improve upon straightforward linear regression.

  • Elastic net. This method aims to reduce the number of characteristics (36 in our case) by eliminating those with the lowest or no forecasting ability. It also minimizes the potential noise that may be present in a sample that could impair out-of-sample predictive performance. This method does not detect data-driven non-linear relationships or interaction effects.

  • Tree-based methods. Random forests and gradient-boosted regression trees follow the idea of sequentially partitioning the underlying data into groups of firm characteristics – ‘growing’ a tree. New branches are created every time the data is separated. At each new branch, the characteristic that generates the biggest separation in the database is selected, with the tree growing as high as the researcher allows, ending in a leaf.

  • Neural networks. These are flexible models that connect multiple layers. They consist of an input layer of firm characteristics and at least one hidden layer of activation functions. An output layer aggregates the hidden layers’ outcomes into a return prediction. When a model uses more than one hidden layer – ours uses up to five – it is sometimes referred to as a deep learning model.


With 1990 to 2001 as our initialization period, we used data from the first half for training and the second half for validation. We trained the models on our entire set of emerging market stock returns and refrained from developing country-specific models, because some evidence suggests these may lead to overfitting, which reduces out-of-sample performance.

We can then rank each of the 36 variables in order of their importance by evaluating the negative impact on prediction performance when the variable is left out and the rest of the model remains unchanged. We found that the models make similar choices regarding the most influential characteristics, with price to its 52-week high, idiosyncratic volatility, and turnover being the three most important.

Momentum and short-term reversal are also among the top 15, as well as the price/earnings ratio and profitability. This is information that is worth having. Detecting interaction effects between each of the 36 variables would be incredibly time-consuming and difficult for a human researcher, whereas a machine learning model is able to find these relationships quickly and systematically.

Investment performance

So they work in theory, but how do these interaction effects actually impact investment performance? For investors, it may be more relevant to back-test the signals coming from these models, allowing us to compare the risk and return of portfolios.

To test this, we formed five portfolios based on the machine-predicted excess returns of each stock relative to its country index. We then calculated the return in the next month, using market capitalization-based portfolio weights within each portfolio. Starting in our out-of-sample period from January 2002, we repeated this each month until December 2021, when our sample ends. The results can be seen in the chart below.

using-machine-learning-for-emerging-market-equity-returns-fig1.jpg

Source: Robeco, Hanauer and Kalsbach (2023) using data from January 2002 to December 2021

On average, the returns of the long/short portfolio derived from the two linear models, namely regression and elastic net, were around 0.8% per month. This is substantial and shows that conventional quantitative models are able to generate excess returns in emerging stock markets, confirmed by earlier studies on factor investing in emerging markets.

The random forest and gradient-boosted random tree methods generated higher returns of around 1.0% per month, while the neural networks method and a combination of all machine learning models delivered 1.2%. In short, linear models are good, but machine learning models are better.

Get the latest insights

Subscribe to our newsletter for investment updates and expert analysis.

Don’t miss out

Going back to basics

This does lead to the question of whether this is just a fancy way to pick up the conventional quantitative factors that have been employed in the investment industry for decades. Indeed, as the red bars show, a substantial part of the raw excess returns can be explained by these well-known factors.

On the one hand, this confirms that traditional factor investing can still predict future returns. On the other hand, it also shows that machine learning models give us greater, economically important insight that can bring even higher returns. The linear models show there is about 0.2% per month of alpha left to capture, which increases to 0.5% per month for the tree-based models, and 0.7% per month for the neural network method and the machine learning ensemble.

Hence, using machine learning signals is more profitable than conventional factor investing alone. Even accounting for transaction costs and short-selling constraints, we see that this type of forecast can lead to significant net outperformance over the market, and can be recommended to investors.

Footnote

1See Hanauer and Kalsbach (2023), Machine learning and the cross-section of emerging market stock returns, Emerging Markets Review 55 (2023), 101022.

This article is an excerpt of a special topic in our five-year outlook.

Read all articles


Webinar: 5-Year Expected Returns 2024-2028

Our five-year outlook on market opportunities and risks.


Watch replay

Important information

The contents of this document have not been reviewed by the Securities and Futures Commission ("SFC") in Hong Kong. If you are in any doubt about any of the contents of this document, you should obtain independent professional advice. This document has been distributed by Robeco Hong Kong Limited (‘Robeco’). Robeco is regulated by the SFC in Hong Kong. This document has been prepared on a confidential basis solely for the recipient and is for information purposes only. Any reproduction or distribution of this documentation, in whole or in part, or the disclosure of its contents, without the prior written consent of Robeco, is prohibited. By accepting this documentation, the recipient agrees to the foregoing This document is intended to provide the reader with information on Robeco’s specific capabilities, but does not constitute a recommendation to buy or sell certain securities or investment products. Investment decisions should only be based on the relevant prospectus and on thorough financial, fiscal and legal advice. Please refer to the relevant offering documents for details including the risk factors before making any investment decisions. The contents of this document are based upon sources of information believed to be reliable. This document is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation. Investment Involves risks. Historical returns are provided for illustrative purposes only and do not necessarily reflect Robeco’s expectations for the future. The value of your investments may fluctuate. Past performance is no indication of current or future performance.