18-04-2023 · Research

Researchers have just been scratching the surface of ML in asset management

Many experts have hailed machine learning (ML) as the next frontier for quantitative investors, with good reason. ML offers strong potential, as it can help uncover exploitable nonlinear patterns and interaction effects that more traditional techniques fail to detect. Yet for all the enthusiasm raised, we also caution: ML is not a magic bullet and faces important implementation challenges.

    Authors

  • David Blitz - Chief Researcher

    David Blitz

    Chief Researcher

  • Tobias Hoogteijling - Researcher

    Tobias Hoogteijling

    Researcher

  • Harald Lohre - Head of Quant Equity Research

    Harald Lohre

    Head of Quant Equity Research

While ML theory has been around for many years, recent advances in cloud computing power have made it feasible to assess how ML can contribute to investment management. Such increasing popularity is reflected in the soaring number of research papers published in recent years investigating the use of ‘artificial intelligence’ (AI) and ML in quantitative asset management.

Some of the most-cited studies report promising results when predicting one-month stock returns using ML with a large set of traditional predictor variables as input features. Although the models partly pick up known factors, they are able to add value by exploiting nonlinear alpha opportunities and interaction effects.

However, such encouraging findings remain essentially theoretical. Turning the resulting fast alpha signals into profitable investment strategies in practice – once costs and other real-life implementation frictions are taken into account – is easier said than done. For one, the academic literature investigating practical implementation issues remains scarce.

Moreover, most studies suggest the potential for ML models to outperform traditional ones is often reduced by their reliance on high-turnover signals. For this reason, there has recently been an effort to integrate economic structure into loss functions, so the ML model can focus on stocks that are easier to trade. These efforts should increase the likelihood of monetizing the predictive power of ML models.

An evolution more than a revolution

Besides forecasting returns, other promising use cases for ML have been proposed. This includes enhancing traditional factors, creating new variables from unstructured data, and predicting metrics other than return, such as risk or sustainability. So far, ML methods in asset management have therefore been more of an evolution than a revolution.

Asset managers who will disregard advances in ML may see their performance wane relative to those who embrace ML

As technology advances, so do the opportunities for quantitative investors. By incorporating more data and leveraging advanced modelling techniques, we can develop deeper insights and enhance decision-making.

Presumably, asset managers who will disregard advances in ML may see their performance wane relative to those who embrace ML. For example, the ability to automate tasks of traditional analysts, such as reading, seeing or hearing ultimately promises large gains in productivity, provided the asset manager possesses the necessary infrastructure and can investigate different big datasets and signals at scale.

Yet discarding economic theory altogether and turning to a fully data-driven approach can vice versa also set one up for failure. Investors can identify and evaluate the ability of an asset manager to succeed in advancing its investment process accordingly by scrutinizing what research protocol is in place. The latter is key to the success of ML in practice and to navigate the many pitfalls.

Altogether, researchers have just been scratching the surface of the endless possibilities offered by ML, and many exciting new discoveries can be expected in the years ahead. However, human domain knowledge is likely to remain important, because the signal-to-noise ratio in financial data is low, and the risk of overfitting is high.

Read the full story on SSRN


Stay informed on our latest insights

Let's keep the conversation going

Keep track of fast-moving events in sustainable and quantitative investing, trends and credits with our newsletters.

Stay updated
Robeco

Robeco aims to enable its clients to achieve their financial and sustainability goals by providing superior investment returns and solutions.

Important information This disclaimer applies to any documents and the verbal or written comments of any person in presentations or webinars on this website and taken together is referred to herein as the “Information”. The services to which the Information relate are NOT FOR RETAIL CLIENTS - The information contained in the Website is solely intended for professional investors, defined as investors which (1) qualify as professional clients within the meaning of the Markets in Financial Instruments Directive (MiFID), (2) have requested to be treated as professional clients within the meaning of the MiFID or (3) are authorized to receive such information under any other applicable laws and must not be relied or acted upon by any other persons. This Information does not constitute an offer to sell, or a solicitation of an offer to buy, any financial product, and may not be relied upon in connection with the purchase or sale of any financial product. You are cautioned against using this Information as the basis for making a decision to purchase any financial product. To the extent that you rely on the Information in connection with any investment decision, you do so at your own risk. The Information does not purport to be complete on any topic addressed. The Information may contain data or analysis prepared by third parties and no representation or warranty about the accuracy of such data or analysis is provided.
In all cases where historical performance is presented, please note that past performance is not a reliable indicator of future results and should not be relied upon as the basis for making an investment decision. Investors may not get back the amount originally invested. Neither Robeco Institutional Asset Management B.V. nor any of its affiliates guarantees the performance or the future returns of any investments. If the currency in which the past performance is displayed differs from the currency of the country in which you reside, then you should be aware that due to exchange rate fluctuations the performance shown may increase or decrease if converted into your local currency. Robeco Institutional Asset Management B.V. (“Robeco”) expressly prohibits any redistribution of the Information without the prior written consent of Robeco. The Information is not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use is contrary to law, rule or regulation. Certain information contained in the Information includes calculations or figures that have been prepared internally and have not been audited or verified by a third party. Use of different methods for preparing, calculating or presenting information may lead to different results. Robeco Institutional Asset Management UK Limited (“RIAM UK”) is authorised and regulated by the Financial Conduct Authority. RIAM UK, 30 Fenchurch Street, Part Level 8, London EC3M 3BD (FCA Reference No:1007814). The company is registered in England and Wales under Ref No. 15362605.

In all cases where historical performance is presented, please note that past performance is not a reliable indicator of future results and should not be relied upon as the basis for making an investment decision. Investors may not get back the amount originally invested. Neither Robeco Institutional Asset Management B.V. nor any of its affiliates guarantees the performance or the future returns of any investments. If the currency in which the past performance is displayed differs from the currency of the country in which you reside, then you should be aware that due to exchange rate fluctuations the performance shown may increase or decrease if converted into your local currency. Robeco Institutional Asset Management B.V. (“Robeco”) expressly prohibits any redistribution of the Information without the prior written consent of Robeco. The Information is not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use is contrary to law, rule or regulation. Certain information contained in the Information includes calculations or figures that have been prepared internally and have not been audited or verified by a third party. Use of different methods for preparing, calculating or presenting information may lead to different results. Robeco Institutional Asset Management B.V. is authorised as a manager of UCITS and AIFs by the Netherlands Authority for the Financial Markets and subject to limited regulation in the UK by the Financial Conduct Authority. Details about the extent of our regulation by the Financial Conduct Authority are available from us on request.