
Disclaimer Robeco Switzerland Ltd.
The information contained on these pages is solely for marketing purposes.
Access to the funds is restricted to (i) Qualified Investors within the meaning of art. 10 para. 3 et sequ. of the Swiss Federal Act on Collective Investment Schemes (“CISA”), (ii) Institutional Investors within the meaning of art. 4 para. 3 and 4 of the Financial Services Act (“FinSA”) domiciled Switzerland and (iii) Professional Clients in accordance with Annex II of the Markets in Financial Instruments Directive II (“MiFID II”) domiciled in the European Union und European Economic Area with a license to distribute / promote financial instruments in such capacity or herewith requesting respective information on products and services in their capacity as Professional Clients.
The Funds are domiciled in Luxembourg and The Netherlands. ACOLIN Fund Services AG, postal address: Leutschenbachstrasse 50, CH-8050 Zürich, acts as the Swiss representative of the Fund(s). UBS Switzerland AG, Bahnhofstrasse 45, 8001 Zurich, postal address: Europastrasse 2, P.O. Box, CH-8152 Opfikon, acts as the Swiss paying agent.
The prospectus, the Key Investor Information Documents (KIIDs), the articles of association, the annual and semi-annual reports of the Fund(s) may be obtained, on simple request and free of charge, at the office of the Swiss representative ACOLIN Fund Services AG. The prospectuses are also available via the website https://www.robeco.com/ch.
Some funds about which information is shown on these pages may fall outside the scope of CISA and therefore do not (need to) have a license from or registration with the Swiss Financial Market Supervisory Authority (FINMA).
Some funds about which information is shown on this website may not be available in your domicile country. Please check the registration status in your respective domicile country. To view the Robeco Switzerland Ltd. products that are registered/available in your country, please go to the respective Fund Selector, which can be found on this website and select your country of domicile.
Neither information nor any opinion expressed on this website constitutes a solicitation, an offer or a recommendation to buy, sell or dispose of any investment, to engage in any other transaction or to provide any investment advice or service. An investment in a Robeco Switzerland Ltd. product should only be made after reading the related legal documents such as prospectuses, annual and semi-annual reports.
By clicking “I agree” you confirm that you/the company you represent falls under one of the above-mentioned categories of addressees and that you have read, understood and accept the terms of use for this website.
Quantitative investing
Random forest
Random forest (RF) is a popular machine learning algorithm.1 Its simplicity and versatility make it one of the most widely used learning algorithms for both regression and classification. It is used in many applications, including tasks as diverse as object recognition, credit risk assessment or purchase recommendations based on prior customer behavior.
In practice, the RF builds a myriad of individual decision trees. A decision tree is a tool that uses a tree-shaped model of possible options and their respective outcomes. It is a way to represent graphically an algorithm that only contains conditional control statements. Individual trees are created based on a random sample of observations in the broader dataset.
The RF then aggregates the individual the trees, a process called ‘bagging’, to get a more accurate and stable prediction. This can be done by averaging the results when the outcome is a number – for example the expected return of a given stock – or by performing a majority vote when predicting a class variable – for example, when the outcome can be ‘true’ or ‘false’, or a type of object.
To use a simple analogy, let’s imagine someone wants to buy a car and seeks advice from friends. The first friend may ask about the type of powertrain the person may be interested in, depending on the type of intended use (long vs. short distances, daily use vs. holidays only, city vs. countryside) and may come up with a recommendation based on the answers given to these possible choices.
The second friend may ask about the desired driving experience and come up with a very different decision tree (high vs. low driving position, quiet vs. sporty). The third friend may have more of an affinity for design and would therefore ask a series of questions about the desired shape of the vehicle. And so on. In the end, the person will choose the car that was most frequently recommended.
Among the advantages of RFs are the fact that they limit chances of overfitting, improve prediction accuracy and have results that tend to remain relatively stable as datasets grow. On the other hand, the main drawback of RFs is that a large number of trees could render the algorithm too slow and ineffective for real-time predictions.
In the asset management industry, random forest algorithms are being increasingly used for a number of machine learning applications, such as forecasting stock returns2 or predicting distress risk. 3
As technology advances, so do the opportunities for quantitative investors. By incorporating more data and leveraging advanced modelling techniques, we can develop deeper insights and enhance decision-making.
Footnotes
1 Breiman, L., 2001, “Random forests”, Machine learning, Vol. 45, No. 1, pp. 5–32.
2 See for example: Dixon, M., Klabjan, D. and Bang, J. H., 2017, "Classification-based financial markets prediction using deep neural networks”, Algorithmic Finance. See also: Khaidem, L., Saha, S. and Dey, S. R., 2016 "Predicting the direction of stock market prices using random forest”, working paper.
3 See for example: Shen, F., Liu, Y., Lan, D. and Li, Z., 2019, “A dynamic financial distress forecast model with time-weighting based on random forest”. In: Xu, J., Cooke, F., Gen, M. and Ahmed, S. (eds), “Proceedings of the twelfth international conference on management science and engineering management”.