Robeco logo

免責聲明

1. 一般事項

請細閱以下資料。

此網站由Robeco Hong Kong Limited(「荷寶」)擬備及刊發,荷寶是獲香港證券及期貨事務監察委員會發牌從事第1類(證券交易)、第4類(就證券提供意見)及第9類(資產管理)受規管活動的企業。荷寶不持有客戶資產,並受到發牌條件所規限。荷寶在擴展至零售業務之前,必須先得到證監會的批准。本網頁未經證券及期貨事務監察委員會或香港的任何監管當局審閱。

2. 風險披露聲明

Robeco Capital Growth Funds以其特定的投資政策或其他特徵作識別,請小心閱讀有關Robeco Capital Growth Funds的風險:

  • 部份基金可涉及投資、市場、股票投資、流動性、交易對手、證券借貸及外幣風險及小型及/或中型公司的相關風險。

  • 部份基金所涉及投資於新興市場的風險包括政治、經濟、法律、規管、市場、結算、執行交易、交易對手及貨幣風險。

  • 部份基金可透過合格境外機構投資者("QFII")及/或 人民幣合格境外機構投資者 ("RQFII")及/或 滬港通計劃直接投資於中國A股,當中涉及額外的結算、規管、營運、交易對手及流動性風險。

  • 就分派股息類別,部份基金可能從資本中作出股息分派。股息分派若直接從資本中撥付,這代表投資者獲付還或提取原有投資本金的部份金額或原有投資應佔的任何資本收益,該等分派可能導致基金的每股資產淨值即時減少。

  • 部份基金投資可能集中在單一地區/單一國家/相同行業及/或相同主題營運。 因此,基金的價值可能會較為波動。

  • 部份基金使用的任何量化技巧可能無效,可能對基金的價值構成不利影響。

  • 除了投資、市場、流動性、交易對手、證券借貸、(反向)回購協議及外幣風險,部份基金可涉及定息收入投資有關的風險包括信貨風險、利率風險、可換股債券的風險、資產抵押證券的的風險、投資於非投資級別或不獲評級證券的風險及投資於未達投資級別主權證券的風險。

  • 部份基金可大量運用金融衍生工具。荷寶環球消費新趨勢股票可為對沖目的及為有效投資組合管理而運用金融衍生工具。運用金融衍生工具可涉及較高的交易對手、流通性及估值的風險。在不利的情況下,部份基金可能會因為使用金融衍生工具而承受重大虧損(甚至損失基金資產的全部)。

  • 荷寶歐洲高收益債券可涉及投資歐元區的風險。

  • 投資者在Robeco Capital Growth Funds的投資有可能大幅虧損。投資者應該參閱Robeco Capital Growth Funds之銷售文件內的資料﹙包括潛在風險﹚,而不應只根據這文件內的資料而作出投資。


3. 當地的法律及銷售限制

此網站僅供“專業投資者”進接(其定義根據香港法律《證券及期貨條例》(第571章)和/或《證券及期貨(專業投資者)規則》(第571D章)所載)。此網站並非以在禁止刊發或提供此網站(基於該人士的國籍、居住地或其他原因)的任何司法管轄區內的任何人士為對象。受該等禁例限制的人士或並非上述訂明的人士不得登入此網站。登入此網站的人士需注意,他們有責任遵守所有當地法例及法規。一經登入此網站及其任何網頁,即確認閣下已同意並理解以下使用條款及法律資料。若閣下不同意以下條款及條件,不得登入此網站及其任何網頁。

此網站所載的資料僅供資料參考用途。

在此網站發表的任何資料或意見,概不構成購買、出售或銷售任何投資,參與任何其他交易或提供任何投資建議或服務的招攬、要約或建議。此網站所載的資料並不構成投資意見或建議,擬備時並無考慮可能取得此網站的任何特定人士的個別目標、財務狀況或需要。投資於荷寶產品前,必須先細閱相關的法律文件,例如管理法規、基金章程、最新的年度及半年度報告,所有該等文件可於www.robeco.com/hk/zh免費下載,亦可向荷寶於香港的辦事處免費索取。

4. 使用此網站

有關資料建基於特定時間適用的若干假設、資料及條件,可隨時更改,毋需另行通知。儘管荷寶旨在提供準確、完整及最新的資料,並獲取自相信為可靠的資料來源,但概不就該等資料的準確性或完整性作出明示或暗示的保證或聲明。

登入此網站的人士需為其資料的選擇和使用負責。

5. 投資表現

概不保證將可達到任何投資產品的投資目標。並不就任何投資產品的表現或投資回報作出陳述或承諾。閣下的投資價值可能反覆波動。荷寶投資產品的資產價值可能亦會因投資政策及/或金融市場的發展而反覆波動。過去所得的業績並不保證未來回報。此網站所載的往績、預估或預測不應被視為未來表現的指示或保證,概不就未來表現作出任何明示或暗示的陳述或保證。基金的表現數據以月底的交易價格為基礎,並以總回報基礎及股息再作投資計算。對比基準的回報數據顯示未計管理及/或表現費前的投資管理業績;基金回報包括股息再作投資,並以基準估值時的價格及匯率計算的資產淨值為基礎。

投資涉及風險。往績並非未來表現的指引。準投資者在作出任何投資決定前,應細閱相關發售文件所載的條款及條件,特別是投資政策及風險因素。投資者應確保其完全明白與基金相關的風險,並應考慮其投資目標及風險承受程度。投資者應注意,基金股份的價格及收益(如有)可能反覆波動,並可能在短時間內大幅變動,投資者或無法取回其投資於基金的金額。若有任何疑問,請諮詢獨立財務及有關專家的意見。

6. 第三者網站

本網站含有來自第三方的資料或第三方經營的網站連結,而其中部分該等公司與荷寶沒有任何聯繫。跟隨連結登入任何其他此網站以外的網頁或第三方網站的風險,應由跟隨該連結的人士自行承擔。荷寶並無審閱此網站所連結或提述的任何網站,概不就該等網站的內容或所提供的產品、服務或其他項目作出推許或負上任何責任。荷寶概不就使用或依賴第三方網站所載的資料而導致的任何虧損或損毀負上法侓責任,包括(但不限於)任何虧損或利益或任何其他直接或間接的損毀。 此網站以外的網頁或第三方網站皆旨在作參考之用。

7. 責任限制

荷寶及(潛在的)其他網站資料供應商概不就此網站內容或其所載的資料或建議負責,而該等內容、資料或建議可予更改,毋需另行通知。

荷寶並無責任確保及保證此網站的功能將不受干擾或並無失誤。荷寶概不就有關荷寶(交易)服務電郵訊息的後果承擔任何責任,該等電郵訊息可能無法接收或發出、損毀、不正確接收或發出或並無準時接收或發出。

荷寶亦不就因登入及使用此網站而可能導致的任何虧損或損毀負責。

8. 知識產權

所有版權、專利、知識產權和其他財產,以及有關此網站資料的授權均由荷寶持有及獲取。該等權利不會轉授予查閱有關資料的人士。

9. 私隠

荷寶保證將會根據現行的資料保障法例,以保密方式處理登入此網站的人士的數據。除非荷寶需按法律責任行事,否則在未經登入此網站的人士許可,不會向第三方提供該等數據。 請於我們的私隱及Cookie政策 中查找更多詳情。

10. 適用法律

此網站受香港法律監管及據此解釋。因此網站導致或有關此網站的所有爭議應交由香港法庭作出專有裁決。

如果您已閱讀並理解本頁並同意上述免責聲明以及同意荷寶收集和使用您的個人資料,用於私隱及Cookie政策 所列的收集和使用個人資料的目的(包括用於直接推廣荷寶的產品或服務),請點擊“我同意”按鈕。否則,請點擊“我不同意”離開本網站。


我不同意

01-03-2023 · 訪談

'Machine learning models can spot interesting interactions'

Buzzwords such as ‘alternative data’, ‘machine learning’ and ‘natural language processing’ are quickly becoming part of the jargon used by asset managers. We uncover what these mean for the Robeco Quant Team in our discussion with Quant Researcher Clint Howard.

    作者

  • Lusanele Magwa - Investment Specialist

    Lusanele Magwa

    Investment Specialist

概要

  1. We hunt for alternative datasets that we can use to either validate or refute our economic intuition

  2. Machine learning provides quant investors with an extra toolkit to study economic problems

  3. Natural language processing can allow quant investors to go to previously unexplored places

The growing prominence of big data is widening the scope for quant strategies. So, given the multitude of new alternative datasets cropping up, how do you select which ones to use?

“Our research initiatives are premised on ideas that are driven by fundamental economic reasons. As quant investors, we have traditionally used financial statement and market data to conduct such research. Now with the deluge of alternative datasets, we have additional information that we can use and different ways to study our ideas. That said, it is important to be discerning about which datasets can add value.”

“Because we intentionally focus on the economic rationale behind our ideas before selecting data sources (whether alternative or traditional), it allows us to be quite deliberate in picking the datasets that we believe will actually answer the questions we are studying. If you do not start with the economic principles, you face the potential risk of overfitting a model and weakening its predictive power as ill-suited datasets might be chosen.”

“For example, big text data such as broker reports, company announcements and news filings are a rich treasure trove given the large volumes of data available. But these data sources only add value to our process if we can use them to research the economic intuition behind our market observations or hypotheses. Alternative datasets are, therefore, a means to an end, but not the be-all and end-all.”

Data vendors can offer the same datasets to competing asset managers. So how does the Robeco Quant Team gain unique insights?

“This is true, data vendors market and sell their datasets to several asset managers as it is the nature of their business. So if investors just plug in the data into their models or strategies in the same form they receive them in, then they run the risk of falling prey to alpha decay and crowding issues as their peers can easily do the same thing.”

“There are a few ways to address this. An approach we favor is sourcing datasets that are as raw as possible, with minimal alterations made by a vendor. This allows us to transform the granular data so that it is suited to the economic problems we are trying to study. This enables us to incorporate our unique insights and domain knowledge, therefore differentiating our use of the data from competitors’.”

“It is important to stress again that we always start any research we do based on economic intuition. This means that we have a sensible idea about why something might work. Only then do we hunt for the datasets that we can use to either validate or refute our intuition. By following this approach, we believe the possibility of using a dataset in exactly the same manner as another asset manager diminishes.”

What can we do with machine learning (ML) that was not easy to do before?

“For decades, standard linear modeling has been the go-to approach in quant models and has laid the foundation for the success achieved by the investment style over the years. These models essentially impose linear relationships between variables, from which patterns can be deduced to establish alpha signals, risk models or portfolio construction algorithms, for example.”

“ML provides quant investors with an extra toolkit to study economic problems (or reveal such patterns). This flexible and powerful framework – through the use of applications such as neural networks and random forest – can uncover nonlinear relationships between variables as well as how variables interact with each other. This can provide quant investors with additional insight for signal construction.”

“For example, ML models can spot interesting interactions such as between newsflow and stock-price reversals. One of the patterns observed in markets is that when a firm’s share price goes up (or down) by a big margin, it tends to revert back down (or up). Interestingly, we find that this reversal phenomenon is affected by the level of abnormal newsflow related to stocks in question.”

“Specifically, if there has been more newsflow than average on a stock around a time when its share price rallies or sinks, it does not tend to revert. The intuition behind this is that there is probably a genuine reaction to a change in fundamentals if there has been a lot of news covering a recent event. But in the absence of significant newsflow, we do tend to see the reversal pattern in stocks, suggesting that the initial move was probably based on noise rather than fundamentals. So these kind of insights are really interesting for us.”

And why now?

“ML, specifically neural networks, has been around since the 1940s, but there are two main reasons why the concept has only taken off more recently. The first reason is due to computational power. To put this in context, it would have taken several months to run the simplest ML model on the fanciest IBM or Bell Labs research computer back in the day. The turning point was in the 2000s when we witnessed exponential growth in computational power, facilitating the rise of applied research in ML to solve real-world problems.”

“The second reason is related to data as ML models require a lot of it for training purposes. The advent of big data and increasing ease of access – largely due to cloud computing – has been helpful. You can find data on just about anything these days and this has propelled research on ML applications given the increased scope for training. Luckily for us in finance, we also get to benefit from the initial work done by computer scientists in terms of applied research in ML.”

獲取最新市場觀點

訂閱我們的電子報,時刻把握投資資訊和專家分析。

掌握新形勢

What do you think of the notion that ML models are black boxes?

“If you asked me this five to ten years ago, then I would say it is a fair statement because back then there was a lot of hype given the results ML techniques were producing. But there was not a lot of attention given to what lay under the hood. Since then, there have been significant advancements on this front – such as the development of the Explainable AI (XAI) toolkit – that allow users to better understand the predictions made by ML models.”

“For example, Shapley values is an XAI method that allows us to interpret ML models by analyzing the relationship between the model inputs and outputs, how the different variables contribute to predicting outcomes, how the variables interact, etc. This level of understanding is in line with our investment philosophy that all our ideas need to be supported by an economic rationale. These tools allow us to see if ML models make decisions that are in line with our economic intuition.”

“That said, the bar for us to use ML models in our strategies is high given their complex nature. We have to be comfortable that we understand how they work, that they behave in the way that we would expect them to, and that they add value on top of our existing models. Without such XAI tools that transform ML models into ‘glass boxes’, we probably would not be able to explore the possibilities offered by ML.”

Natural language processing (NLP) has attracted a lot of attention in recent years. What are some interesting applications of NLP?

“NLP is a toolkit that can be used to analyze spoken words and text. This is quite exciting for us quant investors as it allows us to go to previously unexplored places. To put this in context, fundamental equity analysts examine broker research notes, analyze company reports, review news releases and meet with management teams, among other things. Using their expertise, they glean insights by reading between the lines. Quant investors can now potentially perform similar tasks with NLP techniques such as sentiment analysis.”

“For example, this allows us to scrutinize how brokers view a company based on how they write about it in their reports, enables us to analyze news sentiment based on the language used in articles pertaining to specific firms, and gives us the tools to assess the mood within a company based on the language used by its executives at press conferences compared to earnings calls. Moreover, this can be done swiftly across thousands of stocks. And this is just one of the many ways in which NLP can be used within quant models.”

But what if company executives adapt their use of words to circumvent this?

“This is classic game theory. In this scenario, quant investors start off by building NLP models to analyze the language used by executives. When the executives catch on to this, they change their communication style to disguise their sentiment. But everything comes full circle as quant investors can retrain their NLP models to catch onto the changes, until the executives make further tweaks to how they relay their messaging.”

“This iterative loop speaks to the concept of: if you want to innovate, then you need to innovate constantly. It is not only our competitors that will try to keep up with us or forge ahead, but also the companies that we invest in. It means we need to continuously update and improve the way we conduct our research and implement our strategies.”

Given the promising prospects of alternative data and advanced techniques, many asset managers are investigating and applying these techniques. What distinguishes Robeco’s approach?

“We were very deliberate in how we approached the incorporation of alternative data and advanced techniques into our research and strategies. We focused firstly on laying the foundations by heavily investing in the infrastructure. We wanted to ensure that we would be able to use these datasets and tools in a robust and repeatable manner, while also being able to seamlessly integrate ML or NLP models into new or existing strategies.”

“We were aware of the risk of spending valuable hours on research as well as building ML and NLP models, and then being thwarted by the complexities of the practical implementation of these models. As a result of our initial investment, the production lead time to deploy new ML and NLP research in our strategies is relatively short.”

“I believe this gives us a competitive edge as setting up state-of-the-art infrastructure requires a lot resources, technical expertise and time to see it to completion. After three or so years of hard work on this project, we are proud of the results and can fully focus on our research pipeline and on implementing our best ideas. This has started to happen as of last year with the inclusion of a distress risk ML model in our strategies that forecasts stock price crash risk.”

Important information

The contents of this document have not been reviewed by the Securities and Futures Commission ("SFC") in Hong Kong. If you are in any doubt about any of the contents of this document, you should obtain independent professional advice. This document has been distributed by Robeco Hong Kong Limited (‘Robeco’). Robeco is regulated by the SFC in Hong Kong. This document has been prepared on a confidential basis solely for the recipient and is for information purposes only. Any reproduction or distribution of this documentation, in whole or in part, or the disclosure of its contents, without the prior written consent of Robeco, is prohibited. By accepting this documentation, the recipient agrees to the foregoing This document is intended to provide the reader with information on Robeco’s specific capabilities, but does not constitute a recommendation to buy or sell certain securities or investment products. Investment decisions should only be based on the relevant prospectus and on thorough financial, fiscal and legal advice. Please refer to the relevant offering documents for details including the risk factors before making any investment decisions. The contents of this document are based upon sources of information believed to be reliable. This document is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation. Investment Involves risks. Historical returns are provided for illustrative purposes only and do not necessarily reflect Robeco’s expectations for the future. The value of your investments may fluctuate. Past performance is no indication of current or future performance.