So, why ML in investing?
The answer is simple: the promise of higher risk-adjusted returns. In general, industry practitioners have found that ML-derived alpha models outperform more traditional, linear models in predicting cross-sectional equity returns.
In this report, the authors explore the interaction between ML and other known quantitative techniques. They examine non-linear effects which are a key factor behind the superior performance of ML. The interaction effect between accounting red flags and equity returns is an interesting illustration of this.
Another notable feature of ML algorithms is their so called ‘knowledge discovery’ abilities. Given that they’re designed to look for relationships, an ML algorithm can decipher the link between inputs and outputs without specifying a hypothesis.
Investor beware…
It’s worth mentioning that financial markets differ from other areas of modern life where ML has made tremendous strides. Financial markets’ inherent complexity throws up notable challenges. For instance, the Robeco research highlights the low signal-to-noise ratio of financial data. This means for a given security, any one metric is generally not a huge determinant of how that security will perform.
Another challenge relates to amount of data, a significant driver of an ML algorithm’s power. While it may feel like there is a vast amount of data in finance, it’s actually relatively small compared with other areas where ML has thrived.
Finally, financial markets are adaptive. This means they ‘learn’ over time, enabling investors to change their approach as required. However, because ML tends to perform well with static systems, this throws up potential difficulties.
Overcoming challenges in application
Due to the short sample data history, overfitting and spurious correlations can occur. While common techniques to overcome this may not work as well in finance, human intuition and economic domain knowledge can help significantly. In the full Robeco paper, you’ll see the authors’ illustration of this using the SHapley Additive exPlanation (SHAP) value.
Robeco suggests that ML investors build a robust data and code infrastructure to tackle potential replicability challenges. This would include a robust system for code version control and documentation of all tested iterations and hypotheses.
Quant investors will be familiar with lookahead bias and the more general problem of data leakage. This phenomenon occurs when data used in the training set contains information that can be used to infer the prediction, information that would otherwise not be available to the ML model in live production. The report outlines various techniques to counteract this potential pitfall.
Machine learning models can be difficult to understand and explain, especially via performance attribution. The full Robeco report offers the fundamental approach to recent explainable machine learning work, including helpful diagrams.
Sample ML applications in finance
The Robeco report analyses practical applications of ML to financial investing. It takes a comprehensive dive into each area of study:
Predicting cross-sectional stock returns
The ML algorithms used here compare the relative, rather than absolute, returns of securities to predict whether a security’s price will rise or fall. The report delves into five consistent results that practitioner and academic studies have found, starting with the outperformance of ML algorithm prediction versus the traditional linear approach.Predicting stock crashes
This application differs slightly in focusing on the worst-performing stocks only, offering potential benefits for conservative strategies which can then exclude securities most likely to crash. The performance of this ML algorithm is shown to be greater than that of traditional approaches, with notable implications for stock selection when looking on a sectoral basis.Predicting fundamental variables
Company fundamentals have a major influence on stock price and performance. Fundamentals, being more stable, may be easier to predict than stock returns. ML models give more accurate earnings forecasts. One key conclusion is that ensemble models, traditional or machine learned, were more accurate than individual models alone.Natural Language Processing (NLP) in multiple languages
In general, a global portfolio may invest in 20-30 different countries, while a typical investor may understand only two or three languages, if that. NLP can be used to overcome this barrier. Taking Chinese as an example, NLP can be used to detect investment terms in both standard Chinese and slang. This can aid understanding of foreign language investment blogs for instance.
Where do we go from here?
With the recent hype around GPT, it’s certainly an opportune moment for investors to look more widely at the use of machine learning in finance. Given that financial markets have unique characteristics, the authors outline why the use of ML is not necessarily a one-way bet for investors. The applications discussed here represent only a subset of ML’s potential, and the future looks set to bring more interest and innovation for this powerful set of tools.
Click here to download the full report免責聲明
本文由荷宝海外投资基金管理(上海)有限公司(“荷宝上海”)编制, 本文内容仅供参考, 并不构成荷宝上海对任何人的购买或出售任何产品的建议、专业意见、要约、招揽或邀请。本文不应被视为对购买或出售任何投资产品的推荐或采用任何投资策略的建议。本文中的任何内容不得被视为有关法律、税务或投资方面的咨询, 也不表示任何投资或策略适合您的个人情况, 或以其他方式构成对您个人的推荐。 本文中所包含的信息和/或分析系根据荷宝上海所认为的可信渠道而获得的信息准备而成。荷宝上海不就其准确性、正确性、实用性或完整性作出任何陈述, 也不对因使用本文中的信息和/或分析而造成的损失承担任何责任。荷宝上海或其他任何关联机构及其董事、高级管理人员、员工均不对任何人因其依据本文所含信息而造成的任何直接或间接的损失或损害或任何其他后果承担责任或义务。 本文包含一些有关于未来业务、目标、管理纪律或其他方面的前瞻性陈述与预测, 这些陈述含有假设、风险和不确定性, 且是建立在截止到本文编写之日已有的信息之上。基于此, 我们不能保证这些前瞻性情况都会发生, 实际情况可能会与本文中的陈述具有一定的差别。我们不能保证本文中的统计信息在任何特定条件下都是准确、适当和完整的, 亦不能保证这些统计信息以及据以得出这些信息的假设能够反映荷宝上海可能遇到的市场条件或未来表现。本文中的信息是基于当前的市场情况, 这很有可能因随后的市场事件或其他原因而发生变化, 本文内容可能因此未反映最新情况,荷宝上海不负责更新本文, 或对本文中不准确或遗漏之信息进行纠正。