Robeco logo

Information importante

L’information publiée dans les pages de ce site internet est plus particulièrement destinée aux investisseurs professionnels.

Certains fonds mentionnés dans le site peuvent ne pas être autorisés à la commercialisation en France par l’Autorité des Marchés Financiers. Les informations ou opinions exprimées dans les pages de ce site internet ne représentent pas une sollicitation, une offre ou une recommandation à l’achat ou à la vente de titres ou produits financiers. Elles n’ont pas pour objectif d’inciter à des transactions ou de fournir des conseils ou service en investissement. Avant tout investissement dans un produit Robeco, il est nécessaire d’avoir lu au préalable les documents légaux tels que le document d’information clé pour l’investisseur (DICI), le prospectus complet, les rapports annuels et semi-annuels, qui sont disponibles sur ce site internet ou qui peuvent être obtenus gratuitement, sur simple demande auprès de Robeco France.

Nous vous remercions de confirmer que vous êtes un investisseur professionnel et que vous avez lu, compris et accepté les conditions d’utilisation de ce site internet.

26-08-2024 · Vision

Quant Chart: Swings in sector sentiment

As the current earnings season draws to a close, investors are eager for insights that go beyond the reported numbers. An example of such insight is the sentiment of executives and investors, which can be extracted from earnings calls. But how can we effectively tap into this resource?

    Auteurs

  • Matthias Hanauer - Researcher

    Matthias Hanauer

    Researcher

  • Tim Vogel - Researcher

    Tim Vogel

    Researcher

  • Daniel Ernst  - Portfolio Manager

    Daniel Ernst

    Portfolio Manager

During earnings calls, C-suite executives provide context to the presented financial numbers and, therefore, help to build a narrative around a company’s financial performance. These sessions can also unveil future risks and opportunities the numbers haven’t reported. Hence, earnings calls and their accompanying transcripts are a powerful data resource to build a more comprehensive understanding of a company’s financial outlook, alongside public accounting data.

However, unlike public accounting or market data, which is structured, earnings call transcripts present unstructured data via words and phrases. This is where natural language processing (NLP) becomes crucial in extracting meaningful insights from earnings calls. NLP can help decode complex financial language, identify sentiment, and highlight key themes discussed during the call.

Historically, word count methods such as ‘Bag of Words’ have long been a widely used technique for analyzing text data. However, they have limitations and shortcomings. For example, they cannot extract information about the relationship between words within a document. By contrast, more modern NLP inference techniques are able to consider context by using textual data embeddings such as FinBERT or transformer-based deep learning algorithms such as GPT-3 or GPT-4.

This use of NLP techniques means we can infer the average sector sentiment during earnings call conferences. Our animation below tracks the swings in net sector sentiment identified during earnings call conferences of S&P 500 companies over time, starting in 2014.

Source: Robeco, FactSet. The animation shows the average net sentiment for the top five sentiment GIGS sectors in earnings call conferences over the last 10 years. For each company and quarter, the net sentiment is computed as the probability that the transcript text sentiment is positive minus the probability that its sentiment is negative. The analysis includes all S&P 500 constituents, and the sample period ends on August 9, 2024. Eighty-seven percent of the S&P 500 constituents already had their Q2 2024 earnings call conferences.

However, we also observe diverging sentiment across sectors. For instance, over the last year, the information technology, communications services, and healthcare sectors each experienced a material jump in sentiment scores, corresponding to positive developments in artificial intelligence, digital media, and glucagon-like peptide 1 (GLP-1) weight loss medications such as Ozempic. Conversely, while economic conditions have improved, the cumulative effect of inflation has weighed on sentiment for both the consumer discretionary and consumer staples sectors.

The analysis above highlights the application of NLP for dynamic sentiment detection using earnings calls. To explore how such tools might be used for dynamic quantitative theme investing, we invite you to contact your Robeco sales representative.

Active Quant : trouver de l’alpha en toute confiance

L’alpha doit être plus qu’un miroir aux alouettes. Nous ne laissons rien au hasard dans notre quête de génération d’alpha pour nos clients.

En savoir plus

Bénéficiez de nos derniers points de vue

Abonnez-vous à notre newsletter pour recevoir des mises à jour sur les investissements et des analyses d'experts.

Ne manquez pas cette occasion