Robeco logo

Disclaimer

Confermo di essere un cliente professionale

Le informazioni e le opinioni contenute in questa sezione del Sito cui sta accedendo sono destinate esclusivamente a Clienti Professionali come definiti dal Regolamento Consob n. 16190 del 29 ottobre 2007 (articolo 26 e Allegato 3) e dalla Direttiva CE n. 2004/39 (Allegato II), e sono concepite ad uso esclusivo di tali categorie di soggetti. Ne è vietata la divulgazione, anche solo parziale.

Al fine di accedere a tale sezione riservata, si prega di confermare di essere un Cliente Professionale, declinando Robeco qualsivoglia responsabilità in caso di accesso effettuato da una persona che non sia un cliente professionale.

In ogni caso, le informazioni e le opinioni ivi contenute non costituiscono un'offerta o una sollecitazione all'investimento e non costituiscono una raccomandazione o consiglio, anche di carattere fiscale, o un'offerta, finalizzate all'investimento, e non devono in alcun caso essere interpretate come tali.

Prima di ogni investimento, per una descrizione dettagliata delle caratteristiche, dei rischi e degli oneri connessi, si raccomanda di esaminare il Prospetto, i KIIDs delle classi autorizzate per la commercializzazione in Italia, la relazione annuale o semestrale e lo Statuto, disponibili sul presente Sito o presso i collocatori.
L’investimento in prodotti finanziari è soggetto a fluttuazioni, con conseguente variazione al rialzo o al ribasso dei prezzi, ed è possibile che non si riesca a recuperare l'importo originariamente investito.

Rifiuto

29-03-2023 · Ricerca

Why the best is yet to come for factor investors

Having been severely challenged by the quant winter of 2018-2020, factor investing strategies have since made a strong recovery. The growth stocks bubble exacerbated by the Covid-19 shock has given way to a more normal market regime where factor performance resembles historical patterns. Yet this comeback should not induce complacency among investors with the status quo. Instead, we make the case for a thoughtful evolution of factor investing.

Download the publication


Sommario

  1. Recent advances show the way to ‘next-gen’ factor investing

  2. Alternative data and ML can take factor investing to the next level

  3. Sustainability can be integrated efficiently into factor models

Today’s environment is more exciting than ever for factor strategies. For one, recent empirical studies have made it possible for quantitative investors to uncover many signals that are much faster to unfold than more traditional factors, such as value, quality, momentum and low risk. Short-term reversal and short-term industry momentum, which both have a lookback period of just one month, are a case in point.

Such fast signals are often dismissed due to concerns that they do not survive after accounting for transaction costs. But we argue that this challenge can be overcome by combining multiple short-term signals, restricting the universe to liquid stocks, and using cost-mitigating trading rules. With an efficient implementation, short-term signals can offer a strong net alpha potential that enables investors to expand the efficient frontier.

The rise of alternative data

Another exciting development of the past few years is the rapid growth of available alternative datasets, thus offering exciting opportunities for “next generation” factor investing. Classic factors are primarily derived from stock prices and information extracted from financial statements. Other commonly used data include analyst forecasts and prices observed in other markets, such as the bond, option, and shorting markets.

Meanwhile, sources for alternative data include financial transactions, sensors, mobile devices, satellites, public records, and the internet, to name a few. Text data—such as news articles, analyst reports, earnings call transcripts, customer product reviews, or employee firm reviews—can be converted into quantitative signals using natural language processing techniques that are becoming increasingly sophisticated.

All this data can be used not only to create new factors but also to enhance existing factors. For instance, traditional value factors have been criticized for only including tangible assets that are recognized on the balance sheet, while many firms nowadays have mostly intangible assets, such as knowledge capital, brand value, or network value. For estimating the value of knowledge capital, for example, one could consider patent data.

Active Quant: finding alpha with confidence

Blending data-driven insights, risk control and quant expertise to pursue reliable returns.

Find out more

The advent of machine learning

Next to the big data revolution there has also been an explosion in computational power. This allows quantitative investors to move beyond basic portfolio sorts or linear regressions and apply more computationally demanding machine learning (ML) techniques, such as random forests and neural networks. The main advantage of these techniques is that they can uncover nonlinear and interaction effects.

Recent studies report substantial performance improvements when applying ML to the factor zoo. But there are also challenges. For instance, the turnover of ML models can be excessive as the models are typically trained on predicting next one-month returns, to have enough independent observations. Also, the interpretability of ML model outcomes is not straightforward.

So, while machine learning has the potential to further push the frontiers of factor investing, various challenges need to be overcome.

L’investimento quantitativo di nuova generazione

Con il progresso della tecnologia, crescono anche le opportunità per gli investitori quantitativi. Incorporando una maggiore quantità di dati e facendo ricorso a tecniche di modellizzazione avanzate, possiamo acquisire conoscenze più approfondite e ottimizzare il processo decisionale.

Sustainability

Finally, the growing interest in sustainability integration presents another big opportunity for factor investing. Sustainability criteria can be quantified with broad ESG (environmental, social, and governance) scores or more specific metrics, such as carbon footprints, that are widely available nowadays. Because such sustainability scores are conceptually similar to factor scores, it is rather straightforward to incorporate them in the portfolio optimization problem.

This can be done, for instance, in the form of hard constraints or by trading them off against each other in the objective function. In general, a sizable amount of sustainability can be incorporated into factor portfolios without materially affecting factor exposures. In this way, factor investing can marry the twin objectives of wealth and wellbeing.

Download the full publication

loader

Leggi gli ultimi approfondimenti

Iscriviti alla nostra newsletter per ricevere aggiornamenti sugli investimenti e le analisi dei nostri esperti.

Non perdere l'occasione di aggiornarti