Robeco logo

Disclaimer

Confermo di essere un cliente professionale

Le informazioni e le opinioni contenute in questa sezione del Sito cui sta accedendo sono destinate esclusivamente a Clienti Professionali come definiti dal Regolamento Consob n. 16190 del 29 ottobre 2007 (articolo 26 e Allegato 3) e dalla Direttiva CE n. 2004/39 (Allegato II), e sono concepite ad uso esclusivo di tali categorie di soggetti. Ne è vietata la divulgazione, anche solo parziale.

Al fine di accedere a tale sezione riservata, si prega di confermare di essere un Cliente Professionale, declinando Robeco qualsivoglia responsabilità in caso di accesso effettuato da una persona che non sia un cliente professionale.

In ogni caso, le informazioni e le opinioni ivi contenute non costituiscono un'offerta o una sollecitazione all'investimento e non costituiscono una raccomandazione o consiglio, anche di carattere fiscale, o un'offerta, finalizzate all'investimento, e non devono in alcun caso essere interpretate come tali.

Prima di ogni investimento, per una descrizione dettagliata delle caratteristiche, dei rischi e degli oneri connessi, si raccomanda di esaminare il Prospetto, i KIIDs delle classi autorizzate per la commercializzazione in Italia, la relazione annuale o semestrale e lo Statuto, disponibili sul presente Sito o presso i collocatori.
L’investimento in prodotti finanziari è soggetto a fluttuazioni, con conseguente variazione al rialzo o al ribasso dei prezzi, ed è possibile che non si riesca a recuperare l'importo originariamente investito.

Rifiuto

26-08-2024 · Visione

Quant Chart: Swings in sector sentiment

As the current earnings season draws to a close, investors are eager for insights that go beyond the reported numbers. An example of such insight is the sentiment of executives and investors, which can be extracted from earnings calls. But how can we effectively tap into this resource?

    Relatori

  • Matthias Hanauer - Researcher

    Matthias Hanauer

    Researcher

  • Tim Vogel - Researcher

    Tim Vogel

    Researcher

  • Daniel Ernst  - Portfolio Manager

    Daniel Ernst

    Portfolio Manager

During earnings calls, C-suite executives provide context to the presented financial numbers and, therefore, help to build a narrative around a company’s financial performance. These sessions can also unveil future risks and opportunities the numbers haven’t reported. Hence, earnings calls and their accompanying transcripts are a powerful data resource to build a more comprehensive understanding of a company’s financial outlook, alongside public accounting data.

However, unlike public accounting or market data, which is structured, earnings call transcripts present unstructured data via words and phrases. This is where natural language processing (NLP) becomes crucial in extracting meaningful insights from earnings calls. NLP can help decode complex financial language, identify sentiment, and highlight key themes discussed during the call.

Historically, word count methods such as ‘Bag of Words’ have long been a widely used technique for analyzing text data. However, they have limitations and shortcomings. For example, they cannot extract information about the relationship between words within a document. By contrast, more modern NLP inference techniques are able to consider context by using textual data embeddings such as FinBERT or transformer-based deep learning algorithms such as GPT-3 or GPT-4.

This use of NLP techniques means we can infer the average sector sentiment during earnings call conferences. Our animation below tracks the swings in net sector sentiment identified during earnings call conferences of S&P 500 companies over time, starting in 2014.

Source: Robeco, FactSet. The animation shows the average net sentiment for the top five sentiment GIGS sectors in earnings call conferences over the last 10 years. For each company and quarter, the net sentiment is computed as the probability that the transcript text sentiment is positive minus the probability that its sentiment is negative. The analysis includes all S&P 500 constituents, and the sample period ends on August 9, 2024. Eighty-seven percent of the S&P 500 constituents already had their Q2 2024 earnings call conferences.

However, we also observe diverging sentiment across sectors. For instance, over the last year, the information technology, communications services, and healthcare sectors each experienced a material jump in sentiment scores, corresponding to positive developments in artificial intelligence, digital media, and glucagon-like peptide 1 (GLP-1) weight loss medications such as Ozempic. Conversely, while economic conditions have improved, the cumulative effect of inflation has weighed on sentiment for both the consumer discretionary and consumer staples sectors.

The analysis above highlights the application of NLP for dynamic sentiment detection using earnings calls. To explore how such tools might be used for dynamic quantitative theme investing, we invite you to contact your Robeco sales representative.

Active Quant: finding alpha with confidence

Blending data-driven insights, risk control and quant expertise to pursue reliable returns.

Find out more

Leggi gli ultimi approfondimenti

Iscriviti alla nostra newsletter per ricevere aggiornamenti sugli investimenti e le analisi dei nostri esperti.

Non perdere l'occasione di aggiornarti