
免责声明
荷宝私募基金管理(上海)有限公司及其关联公司(“荷宝”)授予您访问本网站的权利, 但您需遵守以下条款和条件。请您仔细阅读以下条款和条件。
访问本网站及其任何页面, 即表示您声明并保证您所在司法管辖区的适用法律和法规允许您访问该信息, 并且您已同意以下条款和条件。如果您不同意这些条款和条件, 请不要访问本网站。 荷宝保留更改该等条款和条件的权利, 您应当定期查看此类更改, 您继续使用本网站即表示同意所有此类更改。
本网站上的任何内容均不构成税务、会计、监管、法律、保险或投资建议。本网站所载的信息或任何意见均不构成荷宝对买卖任何证券、期货、期权、基金或其他金融工具的招揽或要约, 并且若在任何司法管辖区内, 根据其适用法律, 此类要约、招揽、购买或出售是违法的, 也不得向任何人提供或出售任何此类金融工具。
限制
本网站不针对由于任何原因本网站被禁止发布或使用的司法管辖区内的人士, 任何适用此类禁令的人士不得访问本网站。访问本网站的用户有责任遵守适用法律法规。
信息与材料
这些页面中包含的信息, 材料, 条款, 条件和说明可能会有所变化。本网站包含的信息和材料, 包括但不限于文本, 图形, 链接或其他项目, 均为“现有”或“现存”信息。
荷宝尽合理努力在本网站中提供准确和最新的信息。但是荷宝不保证此信息和材料的准确性, 充分性或完整性, 并明确表示不对此类信息和材料中的错误或遗漏承担责任。您必须自己评估本网站所含信息的相关性, 准确性和充分性, 并进行您认为必要或适当的独立调查, 以进行此类评估。本网站包含的任何意见或估计均为一般性的, 您不得依赖其作为建议。
荷宝及其任何雇员或代理均未对您或任何特定人士或群体的投资目标, 财务状况或特殊需要进行任何考虑或调查。因此, 对于因您或任何人士或群体根据本网站包含的任何信息, 意见或估价而直接或间接造成的任何损失, 荷宝不作任何保证, 也不承担任何责任。
用于编制本网站的任何研究或分析均由荷宝获得, 供其自行使用, 并且可能是出于其自身目的而采取的行动。荷宝保留随时更改和更正意见、本网站及相关材料和链接的权利, 恕不另行通知。
不保证: 限制与责任
荷宝提供本网站的信息及材料, 但不作出与此相关的任何保证, 无论是明示的, 暗示的或法定的保证, 包括但不限于不侵犯第三方权利, 所有权, 适销性, 适用于特殊用途, 或免于计算机病毒的保证。
对于通过使用或访问本网站可能导致的任何形式的损失或损害, 包括直接的、间接的或后果性的损害, 荷宝均不承担责任。
互联网用户应该意识到, 由于我们无法控制的情况,
互联网上的通信可能会受到干扰、传输中断、数据传输延迟或错误的影响。荷宝明确表示不对中断、缺陷、操作或传输延迟、计算机病毒或系统故障,
或与本网站提供的信息和材料中的任何错误或遗漏承担责任。此外, 对于与本网站、使用或无法使用本网站有关或由此引起的任何损失或损害,
或任何未经授权方和任何计算机病毒篡改用户计算机系统的行为, 荷宝均不承担责任。
Quantitative investing
Random forest
Random forest (RF) is a popular machine learning algorithm.1 Its simplicity and versatility make it one of the most widely used learning algorithms for both regression and classification. It is used in many applications, including tasks as diverse as object recognition, credit risk assessment or purchase recommendations based on prior customer behavior.
In practice, the RF builds a myriad of individual decision trees. A decision tree is a tool that uses a tree-shaped model of possible options and their respective outcomes. It is a way to represent graphically an algorithm that only contains conditional control statements. Individual trees are created based on a random sample of observations in the broader dataset.
The RF then aggregates the individual the trees, a process called ‘bagging’, to get a more accurate and stable prediction. This can be done by averaging the results when the outcome is a number – for example the expected return of a given stock – or by performing a majority vote when predicting a class variable – for example, when the outcome can be ‘true’ or ‘false’, or a type of object.
To use a simple analogy, let’s imagine someone wants to buy a car and seeks advice from friends. The first friend may ask about the type of powertrain the person may be interested in, depending on the type of intended use (long vs. short distances, daily use vs. holidays only, city vs. countryside) and may come up with a recommendation based on the answers given to these possible choices.
The second friend may ask about the desired driving experience and come up with a very different decision tree (high vs. low driving position, quiet vs. sporty). The third friend may have more of an affinity for design and would therefore ask a series of questions about the desired shape of the vehicle. And so on. In the end, the person will choose the car that was most frequently recommended.
Among the advantages of RFs are the fact that they limit chances of overfitting, improve prediction accuracy and have results that tend to remain relatively stable as datasets grow. On the other hand, the main drawback of RFs is that a large number of trees could render the algorithm too slow and ineffective for real-time predictions.
In the asset management industry, random forest algorithms are being increasingly used for a number of machine learning applications, such as forecasting stock returns2 or predicting distress risk. 3
Footnotes
1 Breiman, L., 2001, “Random forests”, Machine learning, Vol. 45, No. 1, pp. 5–32.
2 See for example: Dixon, M., Klabjan, D. and Bang, J. H., 2017, "Classification-based financial markets prediction using deep neural networks”, Algorithmic Finance. See also: Khaidem, L., Saha, S. and Dey, S. R., 2016 "Predicting the direction of stock market prices using random forest”, working paper.
3 See for example: Shen, F., Liu, Y., Lan, D. and Li, Z., 2019, “A dynamic financial distress forecast model with time-weighting based on random forest”. In: Xu, J., Cooke, F., Gen, M. and Ahmed, S. (eds), “Proceedings of the twelfth international conference on management science and engineering management”.