Robeco, The Investments Engineers
blue circle

18-04-2023 · リサーチ

Researchers have just been scratching the surface of ML in asset management

Many experts have hailed machine learning (ML) as the next frontier for quantitative investors, with good reason. ML offers strong potential, as it can help uncover exploitable nonlinear patterns and interaction effects that more traditional techniques fail to detect. Yet for all the enthusiasm raised, we also caution: ML is not a magic bullet and faces important implementation challenges.

    執筆者

  • David Blitz - チーフ・リサーチャー

    David Blitz

    チーフ・リサーチャー

  • Tobias Hoogteijling - Researcher

    Tobias Hoogteijling

    Researcher

  • Harald Lohre - Head of Quant Equity Research

    Harald Lohre

    Head of Quant Equity Research

While ML theory has been around for many years, recent advances in cloud computing power have made it feasible to assess how ML can contribute to investment management. Such increasing popularity is reflected in the soaring number of research papers published in recent years investigating the use of ‘artificial intelligence’ (AI) and ML in quantitative asset management.

Some of the most-cited studies report promising results when predicting one-month stock returns using ML with a large set of traditional predictor variables as input features. Although the models partly pick up known factors, they are able to add value by exploiting nonlinear alpha opportunities and interaction effects.

However, such encouraging findings remain essentially theoretical. Turning the resulting fast alpha signals into profitable investment strategies in practice – once costs and other real-life implementation frictions are taken into account – is easier said than done. For one, the academic literature investigating practical implementation issues remains scarce.

Moreover, most studies suggest the potential for ML models to outperform traditional ones is often reduced by their reliance on high-turnover signals. For this reason, there has recently been an effort to integrate economic structure into loss functions, so the ML model can focus on stocks that are easier to trade. These efforts should increase the likelihood of monetizing the predictive power of ML models.

An evolution more than a revolution

Besides forecasting returns, other promising use cases for ML have been proposed. This includes enhancing traditional factors, creating new variables from unstructured data, and predicting metrics other than return, such as risk or sustainability. So far, ML methods in asset management have therefore been more of an evolution than a revolution.

Asset managers who will disregard advances in ML may see their performance wane relative to those who embrace ML

As technology advances, so do the opportunities for quantitative investors. By incorporating more data and leveraging advanced modelling techniques, we can develop deeper insights and enhance decision-making.

Presumably, asset managers who will disregard advances in ML may see their performance wane relative to those who embrace ML. For example, the ability to automate tasks of traditional analysts, such as reading, seeing or hearing ultimately promises large gains in productivity, provided the asset manager possesses the necessary infrastructure and can investigate different big datasets and signals at scale.

Yet discarding economic theory altogether and turning to a fully data-driven approach can vice versa also set one up for failure. Investors can identify and evaluate the ability of an asset manager to succeed in advancing its investment process accordingly by scrutinizing what research protocol is in place. The latter is key to the success of ML in practice and to navigate the many pitfalls.

Altogether, researchers have just been scratching the surface of the endless possibilities offered by ML, and many exciting new discoveries can be expected in the years ahead. However, human domain knowledge is likely to remain important, because the signal-to-noise ratio in financial data is low, and the risk of overfitting is high.

Read the full story on SSRN


クレジットに関する最新の「インサイト」を読む

重要事項

当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。 ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。 運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。 当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。 商号等: ロベコ・ジャパン株式会社  金融商品取引業者 関東財務局長(金商)第2780号 加入協会: 一般社団法人 日本投資顧問業協会