Investors show increasing interest in thematic investing, with active funds managed out of Europe having received about EUR 160 billion of new investor money in the last five years.1 Thematic investing focuses on long-term secular themes and the companies actively involved in and benefiting from them. Examples of such secular themes include microcomputers (PC), the internet, smartphones and connected devices, athleisure wear, and social media – all of which have unfolded over the past several decades. Meanwhile, current-day secular themes may include vehicle electrification, artificial intelligence (AI), and clean energy transition.
Thematic investing is typically carried out by fundamental investors, using human intuition and personal judgments. Strategies cover a wide range of structural changes: technological, regulatory and socioeconomic, and thematic investors count on their analytical edge and expectation biases from other investors to anticipate and take advantage of those structural changes.
Quantitative augmentations
As established and successful as this approach is, we believe quantitative methods can improve the thematic investment process in two main ways. Firstly, in the development of thematic hypotheses. The challenge of identifying these is that humans have limited mental, physical, and attention bandwidth. But this issue doesn’t apply to quantitative algorithms because machines can process vast amounts of information quickly, and they don’t get tired. With the appropriate algorithm and input, machines can identify emerging and trending themes across all companies in a strategy’s investment universe, picking up themes that human investors might have missed or would pick up at a much later time.
Secondly, algorithms do not become emotionally attached to an investment theme or any particular stocks associated with a given theme. Humans can lose objectivity due to the amount of time involved in picking out investments and the emotional attachment formed with their investments. Conversely algorithms evaluate investments based purely on how they are instructed. This may allow investors to exit themes at an appropriate stage as well, when the data no longer justifies such investments.
Quantitative techniques applied
Several components are necessary to implement a quantitative approach to theme investing. As outlined in Figure 1, there are three main techniques.
Figure 1: Techniques used in quantitative theme investing
Source: Robeco, 2024.
We use natural language processing (NLP) to carry out theme detection, the first technique. For example, texts from various sources may be written about areas related to biomedical engineering, from research and product development to expected patient benefits to revenue streams and market growth. If these texts are relatively infrequent, the topic detection algorithm will not identify them as a theme. However, if these texts are frequent, then NLP will flag biomedical engineering as a theme. With the same algorithm, not only will the themes themselves be detected, but also companies associated with the themes.
In this example, emergence of advanced biomedical engineering may benefit companies that work on those advanced treatments, but for more traditional therapeutic companies, this may not be a welcome development. So for the second step, we apply another NLP tool called sentiment analysis to identify the sentiment of each company associated with the identified theme. This way, we can identify theme beneficiaries or winners (positive sentiment) and theme detractors or losers (negative sentiment).
A theme winner might be a great long-term investment, but over the shorter-term horizon, it might be overvalued and subject to a crash. Think of Amazon during the dotcom bubble, where it dropped 90% in market cap value after the bubble burst. Here’s where the third quantitative technique is used, in fulfilling our design goal to avoid the large volatility exhibited by some thematic investing strategies.
To solve this issue, we apply our tried and trusted quantitative alpha model, which we’ve employed successfully over the past 20+ years. With this model, not only are we evaluating each and every company held in our portfolio on the balance of value (reasonably priced), momentum (good price trajectory), quality (the company is profitable), sentiment (the company is viewed positively by the market), and growth (the company is projected to grow in the coming years) metrics, but we do so in a dispassionate manner. Applying the quantitative model allows us to evaluate the investments based on rationality, not hype.
Historical and current detected themes
At any given time, there are many themes playing out in the real world simultaneously. Since the theme detection algorithm we designed is not physically limited like humans, it can detect multiple themes simultaneously and in near real-time.2 Our approach, therefore, invests in multiple themes simultaneously and rotates through themes over time depending on their attractiveness. Figure 2 stylistically illustrates the themes detected by our algorithm, where we see that as time progresses, themes rotate in and out of the detected set. Notice, too, that for themes that exist within the detected set over multiple periods, its width changes from one period to the next. This is because, over time, new companies may enter or exit a given theme, or other themes become more attractive, thus triggering a weight change. For example, the hypothetical internet browser theme was initially composed of Netscape, then later joined by Microsoft and Google as Netscape exited.
Figure 2: Evolution of detected themes
Source: Robeco, 2024.
Figure 3 shows the themes and companies currently detected by our quantitative theme investing process, such as reshaping restaurants, which includes companies like Wingstop, Chipotle and Rational. Their common denominator is their excellence in using digital technologies such as mobile ordering or automated kitchen equipment. This enables them to offer consumers a seamless digital restaurant experience, allowing restaurant operators to be more data-driven and increase profitability.
Figure 3: Current detected themes
Source: Robeco, 2024.
Despite its sizable advantages, a quantitative approach to thematic investing has certain potential drawbacks compared to a fundamental approach. The biggest drawback is that NLP (and all AI) outputs are probabilistic. This means that while the outputs are likely correct, there are still chances that they could be wrong. In our application, this means both the themes detected and the companies associated with the themes. To address this issue, after the themes and companies are determined algorithmically, experienced portfolio managers oversee the results.
There is a strategic advantage to this combined, ‘quantamental’ process versus simply the fundamental one: it is easier for humans to identify themes and companies that algorithms have detected but do not make sense, than for humans to come up with an extensive set of themes currently occurring in the market place, due to reasons mentioned earlier.
Conclusion
Combining quantitative methods with fundamental PM oversight can enhance the thematic investment process even further. With technology becoming ever more powerful and data ever more readily available, we believe quantitative approaches have much to add.
This article is an excerpt of a special topic in our five-year outlook.
See all articles in this seriesFootnotes
1Broadridge. Data per end of Q1 2024.
2The only limits here are the corpora being fed to the algorithm and how well the algorithm is designed in order to detect trending themes.
Webinar: 5-Year Expected Returns 2025-2029
Our five-year outlook on market opportunities and risks.
重要事項
当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。 ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。 運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。 当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。 商号等: ロベコ・ジャパン株式会社 金融商品取引業者 関東財務局長(金商)第2780号 加入協会: 一般社団法人 日本投資顧問業協会