Robeco, The Investments Engineers
blue circle

11-05-2023 · インサイト

Machine learning in finance: Why and how?

With the rise in popularity of machine learning (ML), it’s no surprise that investment practitioners are attracted to this potential industry game changer.

That’s why this new research report by Robeco is an important contribution to the conversation. It provides detailed analysis of the huge upside of this technological advancement, but also expresses a much-needed note of caution for the finance and investment industry.

    執筆者

  • Mike Chen - Head of Next Gen Research

    Mike Chen

    Head of Next Gen Research

  • Weili Zhou - クオンツ株式リサーチ責任者

    Weili Zhou

    クオンツ株式リサーチ責任者

So, why ML in investing?

The answer is simple: the promise of higher risk-adjusted returns. In general, industry practitioners have found that ML-derived alpha models outperform more traditional, linear models in predicting cross-sectional equity returns.

In this report, the authors explore the interaction between ML and other known quantitative techniques. They examine non-linear effects which are a key factor behind the superior performance of ML. The interaction effect between accounting red flags and equity returns is an interesting illustration of this.

Another notable feature of ML algorithms is their so called ‘knowledge discovery’ abilities. Given that they’re designed to look for relationships, an ML algorithm can decipher the link between inputs and outputs without specifying a hypothesis.

Investor beware…

It’s worth mentioning that financial markets differ from other areas of modern life where ML has made tremendous strides. Financial markets’ inherent complexity throws up notable challenges. For instance, the Robeco research highlights the low signal-to-noise ratio of financial data. This means for a given security, any one metric is generally not a huge determinant of how that security will perform.

Another challenge relates to amount of data, a significant driver of an ML algorithm’s power. While it may feel like there is a vast amount of data in finance, it’s actually relatively small compared with other areas where ML has thrived.

Finally, financial markets are adaptive. This means they ‘learn’ over time, enabling investors to change their approach as required. However, because ML tends to perform well with static systems, this throws up potential difficulties.

Overcoming challenges in application

Due to the short sample data history, overfitting and spurious correlations can occur. While common techniques to overcome this may not work as well in finance, human intuition and economic domain knowledge can help significantly. In the full Robeco paper, you’ll see the authors’ illustration of this using the SHapley Additive exPlanation (SHAP) value.

Robeco suggests that ML investors build a robust data and code infrastructure to tackle potential replicability challenges. This would include a robust system for code version control and documentation of all tested iterations and hypotheses.

Quant investors will be familiar with lookahead bias and the more general problem of data leakage. This phenomenon occurs when data used in the training set contains information that can be used to infer the prediction, information that would otherwise not be available to the ML model in live production. The report outlines various techniques to counteract this potential pitfall.

Machine learning models can be difficult to understand and explain, especially via performance attribution. The full Robeco report offers the fundamental approach to recent explainable machine learning work, including helpful diagrams.

As technology advances, so do the opportunities for quantitative investors. By incorporating more data and leveraging advanced modelling techniques, we can develop deeper insights and enhance decision-making.

Sample ML applications in finance

The Robeco report analyses practical applications of ML to financial investing. It takes a comprehensive dive into each area of study:

  1. Predicting cross-sectional stock returns
    The ML algorithms used here compare the relative, rather than absolute, returns of securities to predict whether a security’s price will rise or fall. The report delves into five consistent results that practitioner and academic studies have found, starting with the outperformance of ML algorithm prediction versus the traditional linear approach.

  2. Predicting stock crashes
    This application differs slightly in focusing on the worst-performing stocks only, offering potential benefits for conservative strategies which can then exclude securities most likely to crash. The performance of this ML algorithm is shown to be greater than that of traditional approaches, with notable implications for stock selection when looking on a sectoral basis.

  3. Predicting fundamental variables
    Company fundamentals have a major influence on stock price and performance. Fundamentals, being more stable, may be easier to predict than stock returns. ML models give more accurate earnings forecasts. One key conclusion is that ensemble models, traditional or machine learned, were more accurate than individual models alone.

  4. Natural Language Processing (NLP) in multiple languages
    In general, a global portfolio may invest in 20-30 different countries, while a typical investor may understand only two or three languages, if that. NLP can be used to overcome this barrier. Taking Chinese as an example, NLP can be used to detect investment terms in both standard Chinese and slang. This can aid understanding of foreign language investment blogs for instance.


Where do we go from here?

With the recent hype around GPT, it’s certainly an opportune moment for investors to look more widely at the use of machine learning in finance. Given that financial markets have unique characteristics, the authors outline why the use of ML is not necessarily a one-way bet for investors. The applications discussed here represent only a subset of ML’s potential, and the future looks set to bring more interest and innovation for this powerful set of tools.

Click here to download the full report


重要事項

当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。 ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。 運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。 当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。 商号等: ロベコ・ジャパン株式会社  金融商品取引業者 関東財務局長(金商)第2780号 加入協会: 一般社団法人 日本投資顧問業協会