Robeco, The Investments Engineers
blue circle

17-12-2024 · Investigación

Better by design: Why human choices matter for return predictions via machine learning

Machine learning (ML) models have become increasingly popular for predicting stock returns, both in academic research and industry practice. However, as a still developing field, we see a lot of variety when it comes to key design choices. Recent research systematically explores this and uncovers how these choices directly affect the performance of ML strategies.

Choices choices

The paper by Minghui Chen, Matthias Hanauer, and Tobias Kalsbach, titled ‘Design choices, machine learning, and the cross-section of stock returns’, identifies several key design choices researchers have to make when training ML models. For instance, when setting the prediction (target) variable, should the researcher employ the excess return over the risk-free rate or the abnormal return relative to the market? Is it better to use a continuous target variable or are categories, such as outperformers vs. underperformers, preferable? Is it better to train models based on a rolling window that leads to more adaptive models, or are models based on expanding windows superior, thanks to the availability of more training data?

To assess the importance of such choices, the authors identify seven such key design choices and examine all the ensuing possible combinations, resulting in a total of 1,056 ML models. In this way, the study trains each model on a common set of signals (features) for the US stock market and evaluates their out-of-sample performance using hypothetical top-minus-bottom decile portfolios.

Figure 1 reveals that portfolio returns vary substantially across different model designs, with monthly mean returns ranging from 0.13% to 1.98% and annualized Sharpe ratios ranging from 0.08 to 1.82.1 This variation highlights the substantial impact of human design choices on the performance of ML strategies.

Figure 1 | Cumulative performance of machine learning strategies

Figure 1 | Cumulative performance of machine learning strategies

Source: Robeco, Chen et al. (2024). This figure shows the cumulative performance of a USD 1 initial investment in long-short ML portfolios for each possible combination of the research design choices. For each ML model and month, we first cross-sectionally sort all stocks based on their one-month-ahead return predictions. We then construct the value-weighted long-short portfolios by going long the top decile and short the bottom decile stocks. The solid black line represents the strategy with the median cumulative performance for each month, and the dashed black lines represent the 10th and 90th percentiles of each month, respectively. The sample period is from January 1987 to December 2021.

Machine learning models: Separating the wheat from the chaff

Having documented the substantial variation in the performance of ML models, the study also provides actionable guidance for ML model design:

  • Ensembles of ML models typically outperform individual algorithms.

  • The choice of target variable depends on the investment objective:
    o For identifying relative winners and losers among stocks, predicting stock returns over the market rather than the risk-free rate is better.
    o If the goal is to achieve high market-risk-adjusted returns, CAPM beta-adjusted returns are better.

  • Non-linear ML models are more likely to outperform their linear counterparts when:
    o using abnormal returns relative to the market as the target variable,
    o employing continuous target returns, or
    o adopting expanding training windows.


Conclusion

While computational infrastructure, ML algorithms, and data have become significantly more accessible over the past decade or two, model design remains a critical component of success. At first glance, it might seem that an ML investment strategy only requires a few basic elements: cloud computing space, generic factor data, some Python packages, and a couple of data scientists. However, this approach often lacks the crucial domain knowledge that Robeco has cultivated over 20 years in quant investing. That’s why in financial markets, where the signal-to-noise ratio is low and the risk of overfitting high, investment experience, and economic intuition still play a pivotal role. Robeco’s extensive expertise ensures that ML models focus on meaningful patterns and avoid common pitfalls, bridging the gap between technology and investment insight.

Read the full paper


Footnote

1Please note that these are hypothetical gross returns for long-minus-short strategies that do not consider any transaction costs. We investigated the impact of transaction costs on ML strategies in our study ‘The term structure of machine learning alpha’.


Descubra el valor de la inversión cuantitativa

Suscríbase para conocer las últimas novedades y estrategias sobre inversión cuantitativa.

Explore la inversión cuantitativa

Mantengamos la conversación

Manténgase al día de los constantes cambios en inversión sostenible y factorial, tendencias y crédito.

No se lo pierda
Robeco

El objetivo de Robeco es proporcionar a sus clientes unos rendimientos y soluciones de inversión superiores para que consigan sus objetivos financieros y de sostenibilidad.

Información importante
Los Fondos Robeco Capital Growth no han sido inscritos conforme a la Ley de sociedades de inversión de Estados Unidos (United States Investment Company Act) de 1940, en su versión en vigor, ni conforme a la Ley de valores de Estados Unidos (United States Securities Act) de 1933, en su versión en vigor. Ninguna de las acciones puede ser ofrecida o vendida, directa o indirectamente, en los Estados Unidos ni a ninguna Persona estadounidense en el sentido de la Regulation S promulgada en virtud de la Ley de Valores de 1933, en su versión en vigor (en lo sucesivo, la “Ley de Valores”)). Asimismo, Robeco Institutional Asset Management B.V. (Robeco) no presta servicios de asesoramiento de inversión, ni da a entender que puede ofrecer este tipo de servicios, en los Estados Unidos ni a ninguna Persona estadounidense (en el sentido de la Regulation S promulgada en virtud de la Ley de Valores). Este sitio Web está únicamente destinado a su uso por Personas no estadounidenses fuera de Estados Unidos (en el sentido de la Regulation S promulgada en virtud de la Ley de Valores) que sean inversores profesionales o fiduciarios profesionales que representen a dichos inversores que no sean Personas estadounidenses. Al hacer clic en el botón “Acepto” que se encuentra en el aviso sobre descargo de responsabilidad de nuestro sitio Web y acceder a la información que se encuentra en dicho sitio, incluidos sus subdominios, usted confirma y acepta lo siguiente: (i) que ha leído, comprendido y aceptado el presente aviso legal, (ii) que se ha informado de las restricciones legales aplicables y que, al acceder a la información contenida en este sitio Web, manifiesta que no infringe, ni provocará que Robeco o alguna de sus entidades o emisores vinculados infrinjan, ninguna ley aplicable, por lo que usted está legalmente autorizado a acceder a dicha información, en su propio nombre y en representación de sus clientes de asesoramiento de inversión, en su caso, (iii) que usted comprende y acepta que determinada información contenida en el presente documento se refiere a valores que no han sido inscritos en virtud de la Ley de Valores, y que solo pueden venderse u ofrecerse fuera de Estados Unidos y únicamente por cuenta o en beneficio de Personas no estadounidenses (en el sentido de la Regulation S promulgada en virtud de la Ley de Valores), (iv) que usted es, o actúa como asesor de inversión discrecional en representación de, una Persona no estadounidense (en el sentido de la Regulation S promulgada en virtud de la Ley de Valores) situada fuera de los Estados Unidos y (v) que usted es, o actúa como asesor de inversión discrecional en representación de, un inversión profesional no minorista.


El acceso a este sitio Web ha sido limitado, de manera que no constituya intento de venta dirigida (según se define este concepto en la Regulation S promulgada en virtud de la Ley de Valores) en Estados Unidos, y que no pueda entenderse que a través del mismo Robeco dé a entender al público estadounidense en general que ofrece servicios de asesoramiento de inversión. Nada de lo aquí señalado constituye una oferta de venta de valores o la promoción de una oferta de compra de valores en ninguna jurisdicción. Nos reservamos el derecho a denegar acceso a cualquier visitante, incluidos, a título únicamente ilustrativo, aquellos visitantes con direcciones IP ubicadas en Estados Unidos. Este sitio Web ha sido cuidadosamente elaborado por Robeco. La información de esta publicación proviene de fuentes que son consideradas fiables. Robeco no es responsable de la exactitud o de la exhaustividad de los hechos, opiniones, expectativas y resultados referidos en la misma. Aunque en la elaboración de este sitio Web se ha extremado la precaución, no aceptamos responsabilidad alguna por los daños de ningún tipo que se deriven de una información incorrecta o incompleta. El presente sitio Web podrá sufrir cambios sin previo aviso. El valor de las inversiones puede fluctuar. Rendimientos anteriores no son garantía de resultados futuros. Si la divisa en que se expresa el rendimiento pasado difiere de la divisa del país en que usted reside, tenga en cuenta que el rendimiento mostrado podría aumentar o disminuir al convertirlo a su divisa local debido a las fluctuaciones de los tipos de cambio. Para inversores profesionales únicamente. Prohibida su comunicación al público en general.